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ABSTRACT

It is well known that in non-linear estimation problems the

ML estimator exhibits a threshold effect, i.e. a rapid deterio-

ration of estimation accuracy below a certain SNR or number

of snapshots. This effect is caused by outliers and is not cap-

tured by standard tools such as the Cramér-Rao bound (CRB).

The search of the SNR threshold value can be achieved with

the help of approximations of the Barankin bound (BB) pro-

posed by many authors. These approximations result from

a linear transformation (discrete or integral) of the uniform

unbiasness constraint introduced by Barankin. Nevertheless,

non-linear transformations can be used as well for some class

of p.d.f. including the Gaussian case. The benefit is their

combination with existing linear transformation to get tighter

lower bounds improving the SNR threshold prediction.

Index Terms— Parameter estimation, mean-square-error bounds,
SNR threshold

1. INTRODUCTION

Minimal performance bounds allow for calculation of the best per-
formance that may be achieved, in the Mean Square Error (MSE)
sense, when estimating a set of model parameters from noisy ob-
servations. Historically the first MSE lower bound for determinis-
tic parameters to be derived was the Cramér-Rao Bound (CRB) [8],
which has been the most widely used since. Its popularity is largely
due to its simplicity of calculation leading to closed form expres-
sions useful for system analysis and design. Additionally, the CRB
can be achieved asymptotically (high SNR [6] and/or large number
of snapshots [8]) by Maximum Likelihood Estimators (MLE), and
last but not least, it is the lowest bound on the MSE of unbiased
estimators, since it derives from a local formulation of unbiased-
ness in the vicinity of the true parameters [3]. This initial charac-
terization of locally unbiased estimators has been improved first by
Bhattacharyya’s works [8] which refined the characterization of lo-
cal unbiasedness, and significantly generalized by Barankin works
[1], who established the general form of the greatest lower bound
on MSE (BB) taking into account a uniform unbiasedness definition
(eq. (1)). Unfortunately the BB is the solution of an integral equation
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with a generally incomputable analytic solution (eq. (8)). Therefore,
since then, numerous works detailed in [3][7] have been devoted to
deriving computable approximations of the BB and have shown that
the CRB and the BB can be regarded as key representatives of two
general classes of bounds, respectively the Small-Error bounds and
the Large-Error bounds. These works have also shown that in non-
linear estimation problems three distinct regions of operation can be
observed. In the asymptotic region, i.e. at a high number of indepen-
dent snapshots and/or at high SNR, the MSE is small and, in many
cases, close to the Small-Error bounds. In the a priori performance
region where the number of independent snapshots and/or the SNR
are very low, the observations provide little information and the MSE
is close to that obtained from the prior knowledge about the problem.
Between these two extremes, there is a transition region where MSE
of MLEs usually deteriorates rapidly with respect to existing MSE
lower bounds (Large or Small) and exhibits a threshold behaviour,
which corresponds to a ”performance breakdown” of the estimators
due to the appearance of outliers. Small-Error bounds are not able
to handle the threshold phenomena, whereas it is revealed by Large-
Error bounds that can be used to predict the threshold value. On the
other hand, large-Error bounds suffer from their computational cost.
Indeed, each BB approximation request the search of an optimum
over a set of test points and their tightness depends on the chosen set
of test points.

And tightness is the matter, since a more accurate knowledge of
the BB allows a better prediction of the SNR threshold value.

Therefore, at least two strategies can be adopted. The first one
consists in the search for the tightest and computable approximation
of the BB, for a given set of test points [3]. The second one consists
in exploiting a particular property of a given class of p.d.f. in order to
design a lower bound able to reveal the set of test points optimizing
its tightness [7]. All these approximations of the BB result from a
linear transformation (discrete or integral) of the uniform unbiasness
constraint introduced by Barankin (eq. (1)). Indeed, they are dif-
ferent solutions of the same norm minimization problem under sets
of appropriate linear constraints (eq. (4)) and derive from a simple
formula (eq. (5)).

Another possible strategy to derive new BB approximations,
possibly tighter, is to resort to non-linear transformations of the uni-
form unbiasness constraint (eq. (1)). It seems that, since the original
idea came from non regular-estimation (class of p.d.f. for which the
CRB is the trivial bound 0) [2], its application to regular-estimation
(class of p.d.f. for which the CRB is not the trivial bound 0) has
been completely overlooked, and has sunk into oblivion.

Therefore the aim of this paper is to bring non-linear transfor-
mations out of oblivion. We show that the rationale introduced in [2]
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is applicable to Gaussian p.d.f., which is one of the most important
regular p.d.f. in signal processing, with application the to single tone
threshold analysis. Moreover, the generalization of this rationale al-
lows to introduce a more general class of possible transformations
(eq. (12)) of the uniform unbiasness constraint (eq. (1)), i.e. the
mixture of integral linear and non-linear transformations, opening
new directions in the search of computable tighter BB approxima-
tions improving the SNR threshold prediction.
Last, but not least, the next Section provides an unified simple frame-
work for the derivation of any Barankin bound approximations based
on linear transformations, including the last ones introduced in [7].

2. BARANKIN BOUND APPROXIMATIONS BY LINEAR
TRANSFORMATIONS

For the sake of simplicity we will focus on the estimation of a single
real function g (θ) of a single unknown real deterministic parameter
θ. In the following, unless otherwise stated, x denotes the random
observation vector of dimension M , Ω the observations space, and
p (x; θ) the probability density function (p.d.f.) of x depending on
θ ∈ Θ, where Θ denotes the parameter space. Let L2 (Ω) be the real
Hilbert space of square integrable functions over Ω.
In the search for a lower bound on the MSE of unbiased estimators,
two fundamental properties of the problem at hand, introduced by
Barankin [1], must be noticed. The first property is that the MSE

of a particular estimator ĝ
(
θ0

)
(x) ∈ L2 (Ω) of g

(
θ0

)
, where θ0

is a selected value of the parameter θ, is a norm associated with a
particular scalar product 〈 | 〉θ:

MSEθ0

[
ĝ

(
θ0

)]
=

∥∥∥ĝ
(
θ0

)
(x) − g

(
θ0)∥∥∥2

θ0
,

〈g (x) | h (x)〉θ0 = Eθ0 [g (x)∗ h (x)] .

The second property is that an unbiased estimator ĝ
(
θ0

)
(x) of g (θ)

should be uniformly unbiased, i.e. for all possible values of the un-
known parameter θ ∈ Θ it must verify:

Eθ

[
ĝ

(
θ0

)
(x)

]
= g (θ) = Eθ0

[
ĝ

(
θ0

)
(x) ν (x; θ)

]
, (1)

where ν (x; θ) = p(x;θ)

p(x;θ0)
denotes the Likelihood Ratio (LR). As a

consequence, the locally-best (at θ0) unbiased estimator is the solu-
tion of a norm minimization under linear constraints

min
{

MSEθ0

[
ĝ

(
θ0

)]}
under Eθ0

[
ĝ

(
θ0

)
(x) ν (x; θ)

]
= g (θ) ,

solution that can be obtained by using the norm minimization lemma

min
{
uHu under cH

k u = vk, 1 ≤ k ≤ K
}

= vHG−1v

uopt =
K∑

k=1

αkck, α = G−1v, Gn,k = cH
n ck

. (2)

Unfortunately, as shown hereinafter, if Θ contains a continuous
subset of R, then the norm minimization under a set of an infinite
number of linear constraints (1) leads to an integral equation (8)
with no analytical solution in general. Therefore, since the original
work of Barankin [1], many studies [3, and references therein][7]
have been dedicated to the derivation of “computable” lower bounds
approximating the MSE of the locally-best unbiased estimator (BB).
All these approximations derive from sets of discrete or integral
linear transform of the ”Barankin” constraint (1), and accordingly of
the LR, and can be obtained using the following simple rationale.

Let θN =
(
θ1, . . . , θN

)T ∈ ΘN be a vector of N test points,

ν
(
x; θN

)
=

(
ν

(
x; θ1

)
, . . . , ν

(
x; θN

))T
be the vector of LR as-

sociated to θN , ξ (θ) = g (θ)−g
(
θ0

)
and ξ

(
θN

)
=

(
ξ
(
θ1

)
, . . . , ξ

(
θN

))T
.

Any unbiased estimator ĝ
(
θ0

)
(x) verifying (1) must comply with

Eθ0

[(
ĝ

(
θ0

)
(x) − g

(
θ0)) ν

(
x; θN

)]
= ξ

(
θN

)
, (3)

and with any subsequent linear transformation of (3). Therefore, any
given set of K (K ≤ N) independent linear transformations of (3):

Eθ0

[(
ĝ

(
θ0

)
(x) − g

(
θ0)) hT

k ν
(
x; θN

)]
= hT

k ξ
(
θN

)
, (4)

hk ∈ R
N , k ∈ [1, K], provides with a lower bound on the MSE (2):

MSEθ0

[
ĝ

(
θ0

)] ≥ ξ
(
θN

)T

G̃HK ξ
(
θN

)
, (5)

where G̃HK = HK

(
HT

KRνHK

)−1
HT

K , HK = [h1 . . . hK ]
and (Rν )n,m = Eθ0 [ν (x; θn) ν (x; θm)]. The BB is obtained by
taking the supremum of (5) over all the existing degrees of freedom(
N, θN , K,HK

)
. Moreover, for a given vector of test points θN ,

the lower bound (5) reaches its maximum iff the matrix HK is in-
vertible (K = N) [5], which represents a bijective transformation
of the set of the N initial constraints (3):

MSEθ0

[
ĝ

(
θ0

)] ≥ ξ
(
θN

)T

G̃IN ξ
(
θN

)
≥ ξ

(
θN

)T

G̃HK ξ
(
θN

)
,

where IN is the identity matrix with dimension N . All known
bounds on the MSE deriving from the Barankin Bound is a partic-
ular implementation of (5), including the most general formalism
introduced lately in [7]. Indeed, the limit of (4) where N → ∞ and
θN uniformly samples Θ leads to the linear integral constraint:

Eθ0

[(
ĝ

(
θ0

)
(x) − g

(
θ0)) η (x, τ)

]
= Γh (τ) , (6)

η (x, τ) =

∫
Θ

h (τ , θ) ν (x; θ) dθ, Γh (τ) =

∫
Θ

h (τ , θ) ξ (θ) dθ,

where each hk =
(
h

(
τk, θ1

)
, . . . , h

(
τk, θN

))T
is the vector

of samples of a parametric function h (τ , θ) , τ ∈ Λ ⊂ R, inte-
grable over Θ, ∀τ ∈ Λ. Then, for any subset of K values of τ ,
{τk}k∈[1,K], the subset of the associated K linear integral con-
straints (6) leads to the following lower bound (2):

lim
K→∞

∣∣∣∣∣∣∣∣∣∣∣∣

MSEθ0

[
ĝ

(
θ0

)
(x)

]
≥ MSEθ0

[
ĝ

(
θ0

)
lmvu

(x)
]

MSEθ0

[
ĝ

(
θ0

)
lmvu

(x)
]

= ΓT
h R−1

η Γh = ΓT
h

(
a
λ

)
ĝ

(
θ0

)
lmvu

(x) − g
(
θ0

)
=

K∑
k=1

ak
λ

η (x, τk)

Rη

(
a
λ

)
= Γh

(7)
where (Rη)k,k′ = Eθ0 [η (x, τk) η (x, τk′)] and (Γh)k = Γ (τk).

Therefore, when K → ∞ and the set {τk}k∈[1,K] uniformly sam-

ples Λ, by setting 1
λ

= dτ = τk+1 − τk, β = a
λ

, the integral form
of the above lower bound appears straightforwardly:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

MSEθ0

[
ĝ

(
θ0

)
lmvu

(x)
]

=

∫
Λ

Γh (τ) β (τ) dτ

ĝ
(
θ0

)
lmvu

(x) − g
(
θ0

)
=

∫
Λ

η (x, τ) β (τ) dτ∫
Λ

Kh (τ ′, τ) β (τ) dτ = Γh (τ ′)

, (8)
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Kh (τ , τ ′) = Eθ0 [η (x, τ) η (x, τ ′)]

=

∫∫
Θ

h (τ , θ) Rν (θ, θ′) h (τ ′, θ′) dθdθ′,

Rν (θ, θ′) = Eθ0

[
p(x;θ)

p(x;θ0)
p(x;θ′)
p(x;θ0)

]
=

∫
Ω

p(x;θ)p(x;θ′)
p(x;θ0)

dx,

which is exactly the main result introduced in [7] and is a general-
ization of the Kiefer Bound [4] (K = 2). Note that if h (τ , θ) =
δ (τ − θ) (limit case of HN = IN where N = K → ∞) then
Kh (τ , τ ′) = Rν (τ , τ ′) and (8) becomes the simplest expression
of the exact Barankin Bound [3, (10)]. As mentioned above, in
most practical cases, it is impossible to find either the limit of (7)
or an analytical solution of (8) to obtain an explicit form of the exact
Barankin Bound on the MSE, which somewhat limits its interest.
Nevertheless this formalism allows to use discrete (4) or integral (6)
linear transforms of the LR, possibly non-invertible, possibly opti-
mized for a set of p.d.f. (such as the Fourier transform in [7]) in
order to get a tight approximation of the BB.

3. BARANKIN BOUND APPROXIMATIONS BY
NON-LINEAR TRANSFORMATIONS

At the opposite, the use of a non-linear transformation of the unbi-
asness definition (1) of type

Eθ0

[
ĝ

(
θ0

)
(x) t (ν (x; θ))

]
= h (g (θ)) (9)

is more obscure since it seems a difficult mathematical task to com-
pute the bias transformation function h ( ) as a function of the LR
transformation function t ( ) and of the LR. Nevertheless there is
a class of estimation problems where non-linear transformations of
the LR can be used to derive new lower bounds on the MSE. It is
the class of estimation problems characterized by a p.d.f. p (x; θ)
for which there exists at least one real valued function t ( ) such that,
the transformation of p.d.f. p (x; θ) by t ( ) is still - up to a normal-
ization constant, w.r.t. x, k (θ, t) - a p.d.f. of the form p (x; ) but
parameterized by a modified parameter value γ, function of the ini-
tial parameter θ and of the transformation t ( ):

t (p (x; θ)) = k (θ, t) p (x; γ (θ, t)) , k (θ, t) =

∫
Ω

t (p (x; θ)) dx

(10)
Then an unbiased estimator verifying (1) verifies as well,∀θ ∈ Θ:∫

Ω

ĝ
(
θ0

)
(x) t (p (x; θ)) dx = k (θ, t)

∫
Ω

ĝ
(
θ0

)
(x) p (x; γ (θ, t)) dx

= k (θ, t) g (γ (θ, t))

what implies,∀θ ∈ Θ

Eθ0

[(
ĝ

(
θ0

)
(x) − g

(
θ0)) t (p (x; θ))

p
(
x; θ0

) ]
=

k (θ, t)
[
g (γ (θ, t)) − g

(
θ0)] .

In the most general case, if there exists a set of functions tθ ( ) veri-
fying (10), then any unbiased estimator also verifies,∀θ ∈ Θ:

Eθ0

[(
ĝ

(
θ0

)
(x) − g

(
θ0)) tθ (p (x; θ))

p
(
x; θ0

) ]
=

k (θ, tθ)
[
g (γ (θ, tθ)) − g

(
θ0)] .

Therefore, if we update the definition of ν (x; θ) and ξ (θ) in (6)
according to

ν (x;θ) =
tθ (p (x; θ))

p
(
x; θ0

) , ξ (θ) = k (θ, tθ)
[
g (γ (θ, tθ)) − g

(
θ0)] ,

(11)
all the results released in the previous Section still hold, the linear
integral transformation becoming a mixture of linear and non-linear
integral transformations:

η (x, τ) =

∫
Θ

h (τ , θ) tθ(p(x;θ))

p(x;θ0)
dθ,

Γh (τ) =

∫
Θ

h (τ , θ) k (θ, tθ)
[
g (γ (θ, tθ)) − g

(
θ0

)]
dθ.

(12)

The proposed rationale is a generalization of [2] where the authors
has extended the Hammersley-Chapman-Robbins bound (HCRB)
and the Bhattacharyya bound (BaB) for a particular non-linear
transformation tq (y) = yq, q ∈ ]0, 1] , to overcome a non-regular
estimation problem : the estimation of the parameters of a Pearson
Type III p.d.f.. Indeed for such a p.d.f., the usual bounds based on
linear transformations such as the Cramér-Rao bound (CRB), the
HCRB and the BaB yield the trivial bound 0.
At first sight, the proposed rationale does not seem appealing, since
a non-linear transformation of type (9) or (10) is unlikely to exist
whatever the form of the p.d.f., although the linear transformation
of the LR (6) is always possible, however possibly yielding the
trivial bound 0. It is probably the reason why the application of
the proposed rationale to regular estimation problem has been com-
pletely overlooked, even by authors of [2], although it is applicable
to Gaussian p.d.f..

3.1. Application to the Gaussian observation model

We focus on M -dimensional complex circular Gaussian p.d.f.:

p (x; θ) = p (x;m (θ) ,C (θ)) =
e−(x−m(θ))HC(θ)−1(x−m(θ))

πM |C (θ)|
Then it is worth noticing that the transformation tq (y) = yq can be
applied to the observation model resulting from a mixture of deter-
ministic and stochastic signals in presence of Gaussian interference.
Indeed, in this case m (θ) = m (ε), C (θ) = Ψ (ζ)CsΨ (ζ)H +

Cn, θ =
[
εT , ζT , vec (Cs)

T , vec (Cn)T
]T

and:

tq (p (x; θ)) = k (θ,q) p (x; γ (θ, q)) (13)

k (θ,q) =
πM(1−q)

qqM

∣∣∣∣C (θ)

q

∣∣∣∣1−q

γ (θ, q) =

[
εT , ζT ,

vec (Cs)

q

T

,
vec (Cn)T

q

]T

3.2. Single tone threshold analysis

A reference problem in threshold analysis is the estimation of a sin-
gle tone η ∈ ]−0.5, 0.5[ for a deterministic observation model:

x = aψ
(
η0) + n, ψ(η) =

[
1, ..., ej(M−1)2πη

]T

p (x; θ) =
e−‖x−aψ(η)‖2

πM
(14)
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In this problem, θ =
[
η, a, σ2

n = 1
]
, m (θ) = aψ (η), C (θ) = I,

a2 is the known SNR (a > 0) and n is a complex circular Gaussian
noise, with zero mean and a known covariance matrix Cn = I.

As a consequence: k (θ,q) = πM(1−q)

qM , γ (θ, q) =
(
η, a, 1

q

)
and

g (γ (θ, q)) = g (θ) = η.
Let us now consider the generalization of the HCRB, the sim-
plest approximation of the BB (5) based on 2 test-points η2 =(
η0 + h, η0 − h

)T
where H2 = I, obtained by using the non-linear

transformation mentioned above (13). Application of (5) and (11)

where ν (x; θ) = p(x;θ)q

p(x;θ0)
and ξ (η) = πM(1−q)

qM

(
η − η0

)
leads to

the following lower bound HCRBq:

MSEη0

[
η̂0

]
≥ HCRBq = ξ

(
η2)T

R−1ξ
(
η2)

ξ
(
η2) =

πM(1−q)

qM

[
h
−h

]
, R =

[
R1,1 R1,2

R1,2 R2,2

]

R1,1 = Eθ0

[
p

(
x; θ0 + h

)2q

p
(
x; θ0

)2

]
= αe

2qa2
2q−1‖ψ(η0+h)−ψ(η0)‖2

R1,2 = Eθ0

[
p

(
x; θ0 + h

)q
p

(
x; θ0 − h

)q

p
(
x; θ0

)2

]

= α
e

2qa2
2q−1

∥∥∥∥∥ ψ(η0+h)+ψ(η0−h)
2 −ψ(η0)

∥∥∥∥∥
2

e
2qa2

∥∥∥∥∥ ψ(η0+h)−ψ(η0−h)
2

∥∥∥∥∥
2

R2,2 = Eθ0

[
p

(
x; θ0 − h

)2q

p
(
x; θ0

)2

]
= αe

2qa2
2q−1‖ψ(η0−h)−ψ(η0)‖2

where α = π2M(1−q)

(2q−1)M . The classical HCRB, i.e. the HCRB ob-

tained from a linear transformation of the LR, is the particular case
of its generalized form HCRBq , obtained from a non-linear trans-
formation of the LR, where q = 1.
The benefits on tightness of the introduction of a non-linear transfor-
mation is highlighted on figure (1) where the bounds
HCRB = sup

h
{HCRBq=1} and HCRBNL = sup

h,q
{HCRBq}(

0 ≤ h ≤ 0.5, 1
2

< q < 2
)

are displayed and compared with both
the CRB and the MSE of the MLE estimator for M = 10 and
η0 = 0.

3.3. Results and Perspectives

First, the proof of the gain in tightness of the HCRB incorporating
the non-linear transformation tq (y) = yq allows to state that:
in the case of the Gaussian p.d.f. family described in Section 3.1 (in-
cluding both deterministic and stochastic observation models), there
exists at least one non-linear transformation improving the tightness
of any lower bound deriving from a linear transformation of the un-
biasness constraint (1).
Indeed, all these lower bounds derives from expression (5), which is
a generalization of the HCRB to N test-points.

Second, an immediate improvement of tightness of all existing
lower bounds can be obtained by using the integral form tθ (y) =

yq(θ) of the discrete non-linear transformation tθ (y) = yq , for vari-
ous function q (θ) .

Last, there are probably other non-linear transformations appli-
cable to the Gaussian (or other) p.d.f which should increase the tight-
ness of existing bounds ....
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Fig. 1. Comparison of MSE lower bounds versus SNR

4. CONCLUSION

In this paper, we have shown that it is worth looking for non-linear
transformations of the unbiasness definition to be combined with lin-
ear transformations, in order to derive tighter Barankin bound ap-
proximations to improve the threshold prediction. Indeed such non-
linear transformations exist for the Gaussian p.d.f.. Additionally,
we provide an unified simple framework for the derivation of any
Barankin bound approximations based on mixture of linear and non-
linear transformations.
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