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Abstract—In array processing, lower bounds are used as a benchmark
to evaluate the ultimate performance of estimators. Among these bounds,
the Weiss-Weinstein bound (WWB) is known as the tightest bound of
Weiss-Weinstein family, and is able to predict the threshold effect of
estimator’s mean square error (MSE) at low signal-to-noise ratio (SNR)
and/or at low number of snapshots. In this paper, we derive a closed-
form expression of the WWB for 3D source localization using an arbitrary
planar antenna array in the case of a deterministic known signal. The
presented results are shown to be useful for system design such as array
geometry optimization.

Index Terms—DOA estimation, Weiss-Weinstein bound.

I. INTRODUCTION

The passive source localization problem has been intensively
investigated in the literature [1]. One of the objectives is to estimate
the direction-of-arrival (DOA) of sources located in the outer space
by using an array of sensors. In order to evaluate the estimation
performance independently of the considered estimator, one generally
uses lower bounds on the MSE [2], for example the well known
Cramér-Rao bound (CRB) [3]. However, at low SNR and/or at low
number of snapshots, the CRB is too optimistic. This is due to the
fact that the CRB does not take into account the parameter support
and that estimators are generally biased in such non-asymptotic area.
For these reasons, we are here interested to derive a bound which is
more relevant, the so-called Weiss-Weinstein bound (WWB) [4]. The
WWB is a Bayesian bound known to be one of the tightest bound of
the Weiss-Weinstein family [5], [6] and which can predict the MSE
of estimators over all the SNR range.

Let us note that, in array processing, the source signals are modeled
as either random Gaussian process or deterministic quantities, which
are referred to the unconditional or conditional observation models,
respectively. Particularly, under the conditional assumption, the signal
waveforms can be assumed either unknown or known. While the
conditional observation model with unknown waveform seems more
challenging, the conditional model with known waveforms signals
can be found in several applications such as in mobile telecommu-
nication. Indeed, the information concerning the waveforms signal
helps to improve the estimation accuracy and also to simplify the
implementation (see e.g. [7], [8], [9], [10], and [11]).

Concerning the applications of the WWB in array processing,
surprisingly, to the best of our knowledge, almost all the previous
works are related to the unconditional assumption. In [12], for the
first time, the WWB has been evaluated by way of simulations
and has been compared to the MSE of the MUSIC algorithm and
classical Beamforming using an 8 × 8 element array antenna. In
[13], the authors have introduced a numerical comparison between the
Bayesian CRB, the Ziv-Zakai bound (ZZB) and the WWB for DOA
estimation. In [14], numerical simulations of the WWB to optimize
sensor positions for non-uniform linear arrays have been presented.
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In [15], by considering the matched-field estimation problem, the
authors have derived a semi closed-form expression of the WWB for
the DOA estimation. Indeed, the integration over the prior probability
density function was not performed. To the best of our knowledge, the
context of conditional observation model (with known waveforms) is
available only in [16], where a closed-form expression of the WWB
is given in the simple case of spectral analysis. One can also note that
the ZZB, which is also a tight bound has been derived in [17], in the
context of DOA estimation and under the unconditional observation
model. Of course, if we are only interested by the SNR threshold
prediction, deterministic bounds such as the Barankin Bound have
also been investigated [18], [19].

In this paper, we derive a closed-form expression of the WWB
under the conditional observation model for the 3D source localiza-
tion problem using an arbitrary antenna array. As a by-product, the
closed-form expression of the WWB for the 2D source localization
problem using a linear antenna array (not necessarily uniform) is also
given. Note that in our model, since the angle-of-arrivals are assumed
to have an uniform prior probability density function, the classical
Bayesian CRB does not exist. Consequently, ours results are also
useful to analyze the asymptotic area. Finally, the proposed bound
is used in the context of array geometry design of a V-shaped array
[20].

The paper is organized as follows. In Sec. II, the observation model
is presented. In Sec. III, we derive the closed-form expression of the
WWB for the aforementioned model and in the particular case of
2D source localization. In Sec. IV, some numerical simulations are
presented, and we analyze the V-shaped array design. Finally, the
conclusions are given in Sec. V.

II. MODEL SETUP

We consider the localization of a single narrow-band source using
an arbitrary planar array. This array consists of M identical and
omnidirectional sensors. The source is assumed to be in the far-
field area. The parameters of interest are the elevation and azimuth
angles, denoted θ and φ, respectively (see Fig. 1). For mathematical
convenience, we will consider the estimation of u = sin θ cosφ and
v = sin θ sinφ. Then, the parameter vector becomes Θ = [u v]T . It
will be assumed that both u and v have a prior uniform distribution
over [−1, 1]. Moreover, u and v are assumed to be statistically
independent i.e. p(Θ) = p(u)p(v). The known positions of each
sensor (w.r.t. the Cartesian coordinates) are collected in the following
matrix D = [d1 . . .dM ], where di = [dxi dyi]

T with i = 1 . . .M .
Let y(t), s(t) and n(t) denote the output signal vector, the source

signal and the noise vector at the tth observation, respectively, with
t = 1 . . . T , and where T denotes the number of snapshots. The
observation model is then given by

y(t) = [y1(t) . . . yM (t)]T = a(Θ)s(t) + n(t), (1)

where a(Θ) denotes the M × 1 array steering vector with the ith
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Fig. 1. 3D source localization using a planar array.

element given by

{a(Θ)}i = exp

(
j
2π

λ
d
T
i Θ

)

= exp

(
j
2π

λ
(dxiu+ dyiv)

)
. (2)

The noise vector is assumed to be Gaussian, circular, independent and
identically distributed, with zero mean and covariance matrix σ2

nI.
The source signal s(t) is assumed to be deterministic and known.
These assumptions are justified in [7]–[11].

According to the previous assumptions, it is clear that the observa-
tions are Gaussian with parameterized mean a(Θ)s(t) and covariance
matrix σ2

nI. Therefore, the likelihood function of the observations
Y = [y(1) . . .y(T )] is given by

p(Y;Θ) =
1

(πσ2
n)MT

exp

(
−

1

σ2
n

T∑
t=1

||y(t)− a(Θ)s(t)||2
)
. (3)

In the following section, a closed-form expression of the WWB will
be proposed under the aforementioned assumptions.

III. WWB FOR 3D AND 2D SOURCE LOCALIZATION

Note that we will work with a simplified expression of the WWB.
Indeed, the general form of WWB requires an optimization over some
parameters, called ”test-points” and another parameter denoted s. As
proposed in [21], we will let s = 1/2 and we will use one test-point
per parameter. Such assumptions have been observed in [2], [15], and
[16].

A. General WWB derivation

The expression of the WWB is given by [21]

WWB = sup
hu,hv

HG
−1

H
T
, (4)

where H denotes the test-point matrix

H = [hu hv] =

[
hu 0
0 hv

]
. (5)

Therefore, we have

Θ+ hu =

[
u+ hu

v

]
, (6)

and

Θ+ hv =

[
u
v + hv

]
. (7)

The elements of the 2× 2 matrix G are given by

{G}
kl

=
2 (η (hk,hl)− η (hk,−hl))

η (hk,0) η (0,hl)
, (8)

with {k, l} ∈ {u, v}2, where we define

η (α,β) =

∫
Γ

∫
Ω

√
p (Y,Θ+α) p (Y,Θ+ β)dYdΘ, (9)

and where Ω and Γ denote the observation space and the parameter
space, respectively. Since p(Y,Θ) = p(Y;Θ)p(Θ), the function
η (α,β) can be rewritten as

η (α,β) =

∫
Γ

κ (α,β;Θ)
√

p (Θ + α) p (Θ + β)dΘ, (10)

where we define

κ (α,β;Θ) =

∫
Ω

√
p (Y;Θ+α) p (Y ;Θ+ β)dY. (11)

From (3), we have

κ (α,β;Θ) =
1

(πσ2
n)MT

∫
Ω

exp

(
−

1

2σ2
n

T∑
t=1

ζ (α,β)

)
dY, (12)

where we set

ζ (α,β) = (y(t)− a(Θ + α)s(t))H (y(t)− a(Θ + α)s(t))

+ (y(t)− a(Θ + β)s(t))H (y(t)− a(Θ + β)s(t)) .
(13)

Let us set

x(t) = y(t)−
1

2
(a(Θ + α)s(t) + a(Θ + β)s(t)) , (14)

then

x
H(t)x(t) =

ζ (α,β)

2
− ψ(t), (15)

where

ψ(t) =
||s(t)||2

4

(
aH(Θ + β)a(Θ + α) + aH(Θ + α)a(Θ + β)

−aH(Θ + α)a(Θ + α)− aH(Θ + β)a(Θ + β)
)
.
(16)

Consequently, we have

κ (α,β;Θ) =
1

(πσ2
n)MT

∫
Ω

exp

(
−

T∑
t=1

xH(t)x(t) + ψ(t)

σ2
n

)
dX

= exp

(
−

T∑
t=1

ψ(t)

σ2
n

)
, (17)

since
1

(πσ2
n)MT

∫
Ω

exp

(
−

T∑
t=1

xH(t)x(t)

σ2
n

)
dX = 1. (18)

From (2), we have

a
H(Θ + β)a(Θ + α) =

M∑
i=1

exp

(
j
2π

λ
d
T
i (β −α)

)
, (19)

a
H(Θ + α)a(Θ + β) =

M∑
i=1

exp

(
j
2π

λ
d
T
i (α− β)

)
, (20)

and

a
H(Θ + α)a(Θ + α) = a

H(Θ + β)a(Θ + β) = M. (21)
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Consequently, a closed-form expression of κ(α,β;Θ) is given by

κ (α,β;Θ) =

exp

(
1

2σ2
n

T∑
t=1

||s(t)||2
(
M −

M∑
i=1

cos
(
j
2πd

T
i
(β−α)

λ

)))
.

(22)

Since (22) does not depend on Θ, (10) can be rewritten as

η (α,β) = κ (α,β;Θ)

∫
Γ

√
p (Θ + α) p (Θ + β)dΘ. (23)

The integral in (23) can be easily calculated by noticing that both α

and β can take values from {±hu;±hv;0} and that u and v have
both a uniform prior, leading to∫

Γ

√
p (Θ + hu) p (Θ + hv)dΘ =

1

2
(2− |hu|)(2− |hv |), (24)

∫
Γ

√
p (Θ + hi) p (Θ + hi)dΘ =

1

2
(2− |hi|), (25)

∫
Γ

√
p (Θ + hi) p (Θ − hi)dΘ =

1

2
(2− 2|hi|), (26)

and ∫
Γ

√
p (Θ + hi) p (Θ)dΘ =

1

2
(2− |hi|), (27)

where i = {u, v}.

B. 3D source localization

Let us set CSNR = 1
σ2
n

T∑
t=1

||s(t)||2. By applying (22)-(27) into

(8), the analytic expressions of the elements of matrix G are given
by (28)-(30) shown on the top of the next page. Due to the lack of
space, the inversion of the 2× 2 matrix G and the multiplication by
the matrix of test-points is not reported here.

C. 2D source localization

In the context of the 2D source localization using a linear (possibly
non-uniform) antenna array, the parameter of interest is only the
elevation angle θ (i.e. φ = 0). For mathematical convenience, we
consider the estimation of u = sin θ. Again we assume that u follows
a uniform distribution over [−1; 1]. Without loss of generality, we
suppose that the linear antenna lays on the Ox axis. The ith element
of the steering vector in this case is then given by

{a(Θ)}i = exp

(
j
2π

λ
dxiu

)
. (31)

Moreover, we only use one test-point hu

By applying (22), (23) and (25)-(27) into (8), a closed-form
expression of the WWB is given by (32), shown on the top of the
next page. The WWB is finally obtained by maximization over the
test-point.

IV. SIMULATION RESULTS

First, we consider the 2D source localization using an uniform
linear array consisting of 10 sensors. The inter-sensors space is a
half-wavelength, and the number of snapshots is T = 20. Fig. (2)
shows the MSE of the MAP estimator versus the WWB. The MSE of
the MAP is obtained over 10000 Monte Carlo trials, and the WWB
is obtained by numerical maximization over the test-point. One can
observe that the WWB predicts the threshold effect and that the WWB
coincides with the MSE of the MAP in the asymptotic region. Let
us remind that, for our model, the BCRB does not exist and that,
consequently, the proposed WWB is also useful to characterize the
asymptotic regime.
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Fig. 2. The performance of the MAP versus the WWB.
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Fig. 3. WWB of V-shaped array w.r.t. the opening angle Δ.

Second, the WWB is used as a tool in order to study the impact
of the antenna geometry on the performance estimation. In this case,
we will consider 3D source localization using the V-shaped antenna
[20]. Indeed, it has been shown that this kind of array is often able
to outperform other classical planar arrays, more particularly the
uniform circular array [22]. This array is made from two branches of
ULA arrays and we denote Δ the angle between these two branches.
The V-shaped antenna consists of two uniform linear arrays with 6
sensors located on each branches and one sensor located at the origin.
The sensors are equalspaced by a half-wavelength. The number of
snapshots is T = 20. Fig. (3) shows the behavior of the WWB
w.r.t. the opening angle Δ. One can observe that when Δ varies,
the estimation performance concerning the estimation of parameter
u varies slightly. On the contrary, the estimation performance con-
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{G}uu =

2
(
1− |hu|

2

)
− 2(1 − |hu|) exp

(
−CSNR

2

(
M −

M∑
k=1

cos
(
4π
λ
dxkhu

)))
(
1− |hu|

2

)2
exp

(
−CSNR

(
M −

M∑
k=1

cos
(
2π
λ
dxkhu

))) , (28)

{G}vv =

2
(
1− |hv|

2

)
− 2(1− |hv|) exp

(
−CSNR

2

(
M −

M∑
k=1

cos
(
4π
λ
dykhv

)))
(
1−

|hv |
2

)2
exp

(
−CSNR

(
M −

M∑
k=1

cos
(
2π
λ
dykhv

))) , (29)

{G}vu =

(
2 exp

(
−CSNR

2

(
M −

M∑
k=1

cos
(
2π
λ
(dxkhu − dykhv)

)))
− 2 exp

(
−CSNR

2

(
M −

M∑
k=1

cos
(
2π
λ
(dxkhu + dykhv)

))) )

exp

(
−CSNR

2

(
2M −

M∑
k=1

cos
(
2π
λ
dxkhu

)
−

M∑
k=1

cos
(
2π
λ
dykhv

))) . (30)

WWB = sup
hu

h2
u

(
1− |hu|

2

)2
exp

(
−CSNR

(
M −

M∑
k=1

cos
(
2π
λ
dxkhu

)))

2
(
1−

|hu|
2

)
− 2 (1− |hu|) exp

(
− 1

2
CSNR

(
M −

M∑
k=1

cos
(
4π
λ
dxkhu

))) . (32)

cerning the estimation of parameter v is strongly dependent on Δ.
When Δ increases from 0◦ to 90◦, the WWB of v decreases, as
well as the SNR threshold. Fig. (3) also shows that Δ = 90◦ is the
optimal value, which is different with the optimal value Δ = 53.13◦

in [22] since the assumptions concerning the source signal are not
the same.

V. CONCLUSION

In this paper, we have derived a closed-form expression of WWB
for the 3D source localization under the conditional observation
model. The presented results provide a useful tool to approximate the
estimator performance behavior and to predict the threshold effect.
For example, these bounds have been used to find the optimal angle
of the so-called V-shaped array.
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