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. DU 21 AU 23 FÉVRIER 2011, ALGER

STATISTICAL RESOLUTION LIMIT:
APPLICATION TO PASSIVE POLARIZED SOURCE LOCALIZATION

Mohammed Nabil El Korso, Remy Boyer, Alexandre Renaux and Sylvie Marcos

Laboratoire des Signaux et Systémes (L2S)
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ABSTRACT

This paper considers the evaluation of the so-called Co-
centered Orthogonal Loop and Dipole Uniform and Lin-
ear Array (COLD-ULA) performance by mean of the Sta-
tistical Resolution Limit (SRL). The SRL adressed herein
is based on the estimation accuracy. Toward this end, non-
matrix closed form expressions of the Cramér-Rao Bound
(CRB) are derived and thus, the SRL is deduced by an ad-
equat change of variable formula. Finally, concluding re-
marks and a comparaison between the SRL of the COLD-
ULA and the ULA are given. In particular, we show that,
in the case where the sources are orthogonal, the SRL for
the COLD-ULA is equal to the SRL for the ULA, meaning
that it is not a function of polarisation parameters. Further-
more, thanks to the derived SRL, we show that generally
the performance of the COLD-ULA is better than the per-
formance of the ULA.

1. INTRODUCTION

Passive polarized source localization by an array of sen-
sors is an important topic in a large number of applica-
tions especially in wireless communication [1] and seis-
mology [2]. In this context, one can find several estima-
tion schemes. For example, in [2], [3], [4] and [5] the au-
thors proposed an algorithm based on the shift-invariance
property, the Maximum Likelihood Estimator (MLE), the
ESPRIT algorithm and the MODE algorithm for polarized
far-field narrow-band source localization, respectively.

However, the optimal performance, associated to this
model, has not been fully investigated. In particular, the
SRL on the signal parameters is an essential tool in the
evaluation of system performance [6–10]. To the best
of our knowledge, no results are available concerning the
SRL for such a model.

The goal of this paper is to fill this lack. More pre-
cisely, the challenge herein is to determine the minimum
Direction Of Arrivals (DOA) separation between two po-
larized sources that allows a correct sources resolvability
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for a specific array of sensors, adequate to the localization
of polarized sources, called the COLD-ULA [5]. There
exists essentially three approaches to determine the SRL:
(1) based on the estimation accuracy [7], (2) based on
the detection theory [9] and (3) based on the study of the
spectral function for each estimation method [11]. In this
paper we consider the SRL based on the estimation accu-
racy. The CRB does not directly point out the best resolu-
tion that can be achieved by an unbiased estimator. How-
ever, it expresses a lower bound on the covariance matrix
of any unbiased estimator, thus it can be used to obtain the
SRL. Smith defined the SRL, for pole estimation problem,
as the pole separation that is greater than its standard devi-
ation estimation [7]. In this paper, the Smith criterion will
be applied to the deterministic polarized source localiza-
tion. In this case, the CRB will be efficient (in the sense
of the deterministic MLE) at high Signal to Noise Ratio
(SNR) for a fixed number of snapshot [12]. Consequently,
the CRBs and the SRL expressions derived herein, are
valid under these conditions.

In the following, the CRB for the considered model is
derived in nonmatrix closed form expressions [13], taking
advantage of these expressions, the SRL is deduced for
the COLD-ULA and compared with the SRL of the ULA.
Finally, concluding remarks and comparisons between the
SRL of the COLD-ULA and the ULA are given.

2. MODEL SETUP

Consider a COLD-ULA of L COLD sensors (a COLD
sensor is formed by a loop and a dipole) with interelement
spacing d that receives a signal emitted by M radiating
far-field and narrowband sources. Assuming that the array
and the incident signals are coplanar [5] ,i.e., the elevation
is fixed to π

2 , the signal model observed on the `-th COLD
sensor at the t-th snapshot is given by [5, 14]

x`(t) =
[
x̂`(t)
x̌`(t)

]
=

M∑
m=1

αm(t)umz`m + v`(t),

t ∈ [1 . . . N ], ` ∈ [0 . . . L− 1]



where N is the number of snapshots, zm = ei
2π
λ d sin(θm)

denotes the spatial phase factor in which θm and λ are
the azimuth of the m-th source and the wavelength, re-
spectively. The time-varying source is given by1 αm(t) =
ame

i(2πf0+φm(t)) in which am is the non-zero real ampli-
tude, φm(t) is the time-varying modulating phase and f0
denotes the carrier frequency of the incident wave. The
additive thermal noise is denoted by

v`(t) =
[
v̂`(t) v̌`(t)

]T
in which v̂`(t) and v̌`(t) are random process. The polar-
ization state vector um is given by

um =
[

2iπAsl

λ cos(ρm)
−Lsd sin(ρm)eiψm

]
where ρm ∈ [0, π/2] and ψm ∈ [−π, π] are the polariza-
tion state parameters. In a modeling point of view, each
dipole in the array is assumed to be a short dipole with the
same length Lsd and each loop is assumed to be a short
loop with the same area Asl. Under this assumptions, the
total output vector received by the COLD-ULA at the t-th
snapshot can be wirtten as follows

y(t) =

 x0(t)
...

xL−1(t)

 =
M∑
m=1

Am(t)dm +

 v0(t)
...

vL−1(t)

 (1)

where Am(t) = IL ⊗ (αm(t)um) is of size (2L) × L
in which the operator ⊗ stands for the Kronecker product
and the steering vector is defined by

dm =
[
1 ei

2π
λ d sin(θm) . . . ei(L−1) 2π

λ d sin(θm)
]T
.

Since the problem addressed herein is to derive the SRL
based on the CRB for the proposed model, we first start by
deriving the CRB for (1) in the case of two known sources.

3. DETERMINISTIC CRAMÉR-RAO BOUND
DERIVATION

In the remaining of the paper, we will use the following
assumptions:

A1. The noise is assumed to be a complex circular white
Gaussian random noise with zero-mean and unknown
variance σ2,

A2. The noise is assumed to be uncorrelated both tem-
porally and spatially,

A3. The sources are assumed to be deterministic where
the unknown parameters vector is ξ = [ω1 ω2 σ

2]T

in which ωi = 2π
λ d sin(θi),

A4. Furthermore, in a modeling point of view, we can
assume, without loss of generality, that

Lsd =
2πAsl
λ

= 1.

1Note that this source model is commonly used in many digital com-
munication systems (see [1, 5] and the references therein).

Using A1. and A2. the joint probability density func-
tion of the observation χ =

[
yT (1) . . . yT (N)

]T
given

ξ can be written as follows

p(χ| ξ) =
1

π2NL det(R)
e−(χ−µ)HR−1(χ−µ),

where R = σ2I2NL and

µ =
M∑
m=1

[
AT
m(1) . . . AT

m(L)
]T ⊗ dm.

LetE
{

(ξ̂ − ξ)(ξ̂ − ξ)T
}

be the covariance matrix of

an unbiased estimate of ξ, denoted by ξ̂ and define the
CRB for the considered model. The covariance inequality
principle states that under quite general/weak conditions

MSE([ξ̂]i) = E

{(
[ξ̂]i − [ξ]i

)2
}
≥ CRB([ξ]i), where

CRB([ξ]i) = [FIM−1(ξ)]i,i in which FIM(ξ) denotes the
Fisher Information Matrix regarding to the vector param-
eter ξ.

Since we are working with a Gaussian observation model
(assumption A.1), the ith, jth element of the FIM for the
parameter vector ξ can be written as [11]

[FIM(ξ)]i,j =
NL

σ4

∂σ2

∂ [ξ]i

∂σ2

∂ [ξ]j
+

2
σ2
<

{
∂µH

∂ [ξ]i

∂µ

∂ [ξ]j

}

where [z]i and <{z} denote the ith element of z and the
real part of z, respectively. Then, the FIM for the proposed
model is block-diagonal according to

FIM(ξ) =
2
σ2

[
F 0
0 NL

2σ2

]
(2)

where

[F]mp = <
{
∂µH

∂ωm

∂µ

∂ωp

}
= N<

{
rN

(
uHmupdHmD2dp + k

)}
(3)

in which D = diag{0, . . . , L− 1},

k =
∂ (um)H

∂ωm

∂up
∂ωp

dHmdp−iuHm
∂up
∂ωp

dHmDdp+i
∂um
∂ωm

uHp dHmDdp

and

rN =
1
N

N∑
t=1

α∗1(t)α2(t).

Using the fact that the polarization state vector of a COLD
array is not a function of the direction parameter, thus
∂um/∂ωm = 0, consequently k = 0 and (3) becomes

[F]mp = N<
{
rNuHmupdHmD2dp

}
.

Furthermore, since the polarization state vector is normal-
ized, one obtains

F = N

[
a2
1α <

{
rNuH1 u2η

}
<

{
rNuH1 u2η

}
a2
2α

]



where η =
∑L−1
`=0 `

2ei(ω1−ω2)`, α = 1
6 (L− 1)L(2L− 1)

and uH1 u2 = cos(ρ1) cos(ρ2)+sin(ρ1) sin(ρ2)ei(ψ2−ψ1).
Consequently, its inverse is given by

F−1 =
N

det{F}

[
a2
2α −<

{
rNuH1 u2η

}
−<

{
rNuH1 u2η

}
a2
1α

]
(4)

where

det{F} = N2(a2
1a

2
2α

2 −<2
{
rNuH1 u2η

}
).

Finally, replacing (2) and (4) in CRB(ξ) = FIM−1(ξ),
one obtains

CRB(ω1)
∆
= [CRB(ξ)]1,1 =

σ2

2N

a2
2α

a2
1a2

2α2 −<2{rNuH
1 u2η}

(5)

CRB(ω2)
∆
= [CRB(ξ)]2,2 =

σ2

2N

a2
1α

a2
1a2

2α2 −<2{rNuH
1 u2η}

(6)

CRB(ω1, ω2)
∆
= [CRB(ξ)]1,2 = −

σ2

2N

<{rNuH
1 u2η}

a2
1a2

2α2 −<2{rNuH
1 u2η}

(7)

The CRB is used as a benchmark to evaluate the ef-
ficiency of suboptimal unbiased estimators, however, it
does not indicate the achievable SRL by such estimators.
In the next section, we will make use of the derived CRBs
(5), (6) and (7) to derive the SRL for the proposed model.

4. STATISTICAL RESOLUTION LIMIT

To resolve two sources, Smith [7] proposed the following
criterion: Two sources are resolvable if

standard deviation of source separation

≤ source separation

Consequently, Smith defined the SRL as the source sep-
aration at which the equality in the above inequality is
achieved, in other words, he defined the SRL as the source
separation that is equals to its own CRB.

4.1. Statistical resolution limit for a COLD-ULA

Having CRB(ξ), one can deduce CRB(ξ̆) by using the
change of variable formula

CRB(ξ̆) =
∂g(ξ)
∂ξT

CRB(ξ)
∂gT (ξ)
∂ξ

, (8)

where ξ̆ = g(ξ) = [δ(COLD)
ω σ2]T , in which δ(COLD)

ω =
|ω1 − ω2| and where the Jacobian matrix[

∂g(ξ)
∂ξT

]
i,j

=
∂ [g(ξ)]i
∂ [ξ]j

.

Cconsequently,

∂g(ξ)
∂ξT

=
[

sgn(ω1 − ω2) −sgn(ω1 − ω2) 0
0 0 1

]
,

where sgn(z) = z
|z| for z 6= 0. Without loss of generality,

let us suppose that ω1 > ω2, thus

∂g(ξ)
∂ξT

=
[
1 −1 0
0 0 1

]
. (9)

Using the Jacobian matrix above and (8), one obtains

CRB(δ(COLD)
ω ) ∆=

[
CRB(ξ̆)

]
1,1

= CRB(ω1) + CRB(ω2)− 2CRB(ω1, ω2).

Consequently, the SRL2 is defined as δ(COLD)
ω which

resolve the following equation(
δ(COLD)
ω

)2

= CRB(ω1) + CRB(ω2)− 2CRB(ω1, ω2)
(10)

Consequently, we have to solve(
δ(COLD)
ω

)2

=
σ2

2N
(a2

1 + a2
2)α+ 2<{rNuH1 u2η}

a2
1a

2
2α

2 −<2
{
rNuH1 u2η

} . (11)

4.1.1. The orthogonal sources case

In case of orthogonal sources (rN = 0 [15]), the SRL for
orthogonal sources is given by

δ(COLD−O)
ω =

σ√
2Nα

√
(a2

1 + a2
2)

a2
1a

2
2

=
σ

a1a2

√
3(a2

1 + a2
2)

NL(2L2 − 3L+ 1)
. (12)

For orthogonal sources, it can be readily checked that the
SRL is not a function of polarisation parameters. This is
a surprising result. Note also that the SRL is proportional
to the inverse of the third-half square-root of the number
and to the square-root of sensors and amplitudes. Fur-
thermore, the SRL obtained herein is, qualitatively, con-
sistent with the SRL derived for binary phase-shift keying
sources in [16], since it is proportional to the square-root
of the variance.

4.1.2. The non-orthogonal sources case

Considering the first-order Taylor expansion of functional

η
1=
L−1∑
`=0

`2
(
1 + iδ(COLD)

ω `
)

= α+ iβδ(COLD)
ω

where

β =
L−1∑
`=0

`3 =
1
4
(L− 1)2L2

2From (10), one should note that the SRL using the Smith crite-
rion [7], unlike the Lee criterion [6], takes into account the correlation
between sources.



thus expression (11) for non-orthogonal sources (rN 6= 0)
becomes(

δ(COLD)
ω

)2 1=
σ2

2N
A+ 2B − 2δ(COLD)

ω B̄

C2 − (B − δ
(COLD)
ω B̄)2

(13)

where A = (a2
1 + a2

2)α, B = α<{rNuH1 u2}, B̄ =
β={rNuH1 u2}, and C = a1a2α in which ={z} denotes
the imaginary part of z. Expression (13) is in fact the res-
olution of a fourth-order polynomial given by

2NB̄
(
δ(COLD)
ω

)4

+ 4NBB̄
(
δ(COLD)
ω

)3

+ 2N(B2 − C2)
(
δ(COLD)
ω

)2

− 2σ2B̄δ(COLD)
ω + σ2(A+ 2B) = 0.

This leads to intractable solutions for the SRL. Only keep-
ing the dominant terms lower or equal to the second-order,
one obtains

2N(B2 − C2)
(
δ(COLD)
ω

)2

− (2σ2B̄)δ(COLD)
ω

+ σ2(A+ 2B) = 0.

The discriminant is given by ∆ = 4σ4B̄2 + 8σ2N(C2 −
B2)(A + 2B). Consequently, assuming that ∆ ≥ 0, the
solution is given by

δ(COLD)
ω =

2σ2B̄ ±
√

4σ4B̄2 + 8σ2N(C2 −B2)(A+ 2B)
4N(B2 − C2)

=
2σ2B̄ ± 2σ

√
σ2B̄2 + 2N(C2 −B2)(A+ 2B)

4N(B2 − C2)

=
σ2β={rNuH1 u2} ± σ

√
h

2Nα2(<2{rNuH1 u2} − a2
1a

2
2)
,

where

h = σ2β2=2{rNuH1 u2}
+ 2Nα3(a2

1a
2
2 −<2{rNuH1 u2})((a2

1 + a2
2) + 2<{rNuH1 u2}).

Under A3., the deterministic CRB is reachable only at
high SNR [12], consequently, one can assume that σ2 is
small. In this case, this leads to the following positive so-
lution

δ(COLD)
ω ≈ σ√

2Nα

√
(a2

1 + a2
2) + 2<{rNuH1 u2}

a2
1a

2
2 −<2{rNuH1 u2}

(14)

Consequently, from (12) and (14), we notice that the
SRL depends strongly on the state vector parameter, thus
the performance of a COLD-ULA for orthogonal sources
is better than for non-orthogonal sources, i.e.,
δ
(COLD−O)
ω < δ

(COLD)
ω iff <

{
rNuH1 u2

}
> 0 or

<2
{
rNuH1 u2

}
a2
1a

2
2

> 2
<

{
rNuH1 u2

}
a2
1 + a2

2

.

Furthermore δ(COLD−O)
ω = δ

(COLD)
ω iff uH1 u2 = 0 mean-

ing that the orthogonality of the vectors of the polarization
state parameters induces the same performance regardless
the orthogonality of sources.

4.2. Comparison between the statistical resolution limit
of a COLD-ULA and a ULA

Consider two radiating far-field and narrowband sources
observed by an ULA of L sensors with interelement spac-
ing d [11]. The array and the emitted signals are coplanar.
Furthermore, the additive noise and the model source are
defined as in Section II. Following the same steps leading
to δ(COLD−O)

ω , one obtains after some algebric calcula-
tions the SRL for the ULA denoted by δ(ULA−O)

ω .

4.2.1. Comparison in the orthogonal sources case

In the case where the sources are orthogonal, one obtains
δ
(ULA)
ω = δ

(COLD)
ω meaning that, in the case of orthogo-

nal sources, the performance of the COLD-ULA and the
ULA are similar.

4.2.2. Comparison in the non-orthogonal sources case

In the case where the sources are non-orthogonal

δ(ULA)
ω ≈ σ√

2Nα

√
(a2

1 + a2
2) + 2<{rN}

a2
1a

2
2 −<2{rN}

(15)

Thus, from (14) and (15), one obtains

δ
(COLD)
ω

δ
(ULA)
ω

≈

√(
(a2

1 + a2
2) + 2<{rNuH1 u2}

)
(a2

1a
2
2 −<2{rN})(

a2
1a

2
2 −<2{rNuH1 u2}

)
((a2

1 + a2
2) + 2<{rN})

Which leads to the following implication

δ(COLD)
ω < δ(ULA)

ω iff <{rN} > <{rNuH1 u2} (16)

Consequently, if the sources are non-orthogonal, one
can distinguish the following cases

C1. if the amplitudes are positif reals, i.e., ={rN} = 0,
thus

<{rNuH1 u2} = rN<{uH1 u2}
= rN sin(φ1) sin(φ2) sin(ψ2 − ψ1),

so <{rN} > <{rNuH1 u2} and consequently
δ
(COLD)
ω < δ

(ULA)
ω .

C2. if <{rN} > 0 and ψ1 = ψ2 thus
<{rNuH1 u2} =<{rN (cos(φ1) cos(φ2)+sin(φ1) sin(φ2))}
= <{rN}(cos(φ1) cos(φ2) + sin(φ1) sin(φ2))
= <{rN} cos(φ1−φ2), thus,<{rN} > <{rNuH1 u2}
and consequently δ(COLD)

ω < δ
(ULA)
ω .



Fig. 1. D(rL,uH1 u2) Vs. the polarization state parame-
ters ρ and ψ; (a) rN = 9 + 15i and ρ2 = 10, (c) rN =
15 + 9i and ρ2 = 60.

C3. if the polarization state vectors are the same, i.e.,
ρ1 = ρ2 and ψ1 = ψ2, thus δ(COLD)

ω = δ
(ULA)
ω

meaning that the use of an ULA is equivalent, in
term of performance, to a COLD-ULA if the polar-
ization of the sources is the same. This is expected
since, intuitively, the same polarization doest not
bring additional information to resolve two sources.

Besides C1., C2. and C3., in Fig. 1 we plot

D(rL,uH1 u2) = <{rN} − <{rNuH1 u2}

versus the polarization state parameters ρ and ψ. Con-
sequently, from (16) if D > 0 thus δ(COLD)

ω < δ
(ULA)
ω .

Fig. 1 suggests that generally δ(COLD)
ω < δ

(ULA)
ω whereas

δ
(COLD)
ω > δ

(ULA)
ω only for a small region (which corre-

sponds to the part of the plot that is under the horizon-
tal plan), meaning that generally the performance of the
COLD-ULA is better than the performance of the ULA.

5. CONCLUSION

In this paper, we derived the deterministic CRB in a non-
matrix closed form expression for two polarized far-field
time-varying narrowband known sources observed by a
COLD-ULA. Taking advantage of these expressions, we
deduced the SRL for the COLD-ULA which was com-
pared to the SRL for the ULA. We noticed that, in the case
where the sources are orthogonal, the SRL for the COLD-
ULA is equal to the SRL for the ULA, meaning that it is
not a function of polarisation parameters. This was not ex-
pected. Furthermore, for non-orthogonal sources, we gave

a sufficient and a necessary condition such that the SRL
for the COLD-ULA is less than the SRL for the ULA.
By analytical expressions and numerical simulations we
showed that the SRL for the ULA is less than the SRL for
the COLD-ULA only in few cases, meaning that gener-
ally the performance of the COLD-ULA is better than the
performance of the ULA.
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