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ABSTRACT 

In estimation theory, the asymptotic efficiency of the 
Maximum Likelihood  (ML) method for independent 
identically distributed observations and when the number 
T of observations tends to infinity is a well known result. 
In some scenarii, the number of snapshots may be small 
making this result unapplicable. In the array processing 
framework, for Gaussian emitted signals, we fill this lack 
at high Signal to Noise Ratio (SNR). In this situation, we 
show that the ML estimation is asymptotically (with
respect to SNR) non efficient and non Gaussian. 

1. INTRODUCTION 

In array processing, the asymptotic performances of the 
Stochastic Maximum Likelihood (SML) are well known 
when the number of snapshots T tends to infinity. Indeed, 
within the context of estimation theory, with independent 
and identically distributed observations, the asymptotic 
efficiency and gaussianity of Maximum Likelihood (ML) 
method, when the number of snapshots T tends to infinity, 
are well known results [1]. 
This paper addresses the problem of the SML behaviour 
for a finite number of samples when the SNR tends to 
infinity : this is meaning of “asymptotic” in this paper. In 
this case to our knowledge, there is no general result that 
gives the maximum likelihood estimator distribution. We 
show in this paper that the SML estimator is not efficient 
and not Gaussian when SNR tends to infinity. We also 
show that at high SNR, Stochastic and Deterministic
Maximum Likelihood Criterions (SMLC and DMLC) are 
equivalent: they yield the same estimates. 
This paper is organized as follows. Section 2 presents the 
signal model. The equivalence between the SML and 
DML methods is proved in section 3. The asymptotic 
distribution of SML estimator is established in section 4. 
To confirm our results, simulations are performed in 
section 5. Finally, section 6 gives our conclusions. 

2. THE MODEL 

Let us consider the classical problem of localizing P
sources with an array of  M>P sensors that receive the 
signals )ty( : 

)()()()( ttt e nxAy += for t=1,…T, (1) 

where: 
- [ ])()()( 1 Pθθ aaA �=  is the PM ×  matrix of 

steering vectors; 

- [ ]TPθθ �1=  denotes the candidate vector of the 

P  Directions Of Arrival (DOA) whose exact value is e ;

-   )(tx  is the 1×P vector of the signals emitted by the P

sources; 
-   )(tn  is the noise. It is modeled as a zero mean complex

circular Gaussian vector, spatially and temporally white, 
with the unknown noise power ²σ .
In the sequel 

( ) ( ) ( )[ ]TnnnN ,...,2,1= ,                     (2) 

and 
( ) ( ) ( )[ ]TxxxX ,...,2,1= .                     (3) 

3. DMLC AND SMLC 

Two models are commonly used for signals sources: the 
deterministic model, for which the emitted signals )(tx
treated as unknown parameters, and the stochastic model, 
for which )(tx  is a complex circular Gaussian vector, with 

zero mean and unknown covariance matrix , spatially 
and temporally white. 
In the deterministic model case, the DOA are obtained by 
minimizing of the concentrated criterion: 

( ) ( )( )yR̂
1
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where ( )nΠ  denotes the orthogonal projector onto the 

noise subspace and where the sample covariance matrix of 
a vector v is given by: 
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For the stochastic model case, the DOA are obtained by 
minimizing of the concentrated criterion: 

( ) ( ) ( ) ( ) ( ),R̂ y nDMLssSML CC Π+ΠΠ=       (6) 

where ( )sΠ  denotes the orthogonal projector onto the 

signal subspace and F is the determinant of matrix F.

Theorem 1 
At the first order with respect to N the DOA obtained by 
minimisation of ( )SMLC   and ( )DMLC  are equal. 

Proof 
Let ( )U s and ( )Un  be the PM ×  and ( )PMM −×
matrices built with the orthonormal bases of the signal and 
noise subspaces and set: ( ) ( ) ( )[ ]UUU ns= .

From (6) we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )URU y nDMLss
H
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The matrix involved in the determinant of  (7) is block 
diagonal so that ( )SMLC  can be also written as: 
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In this expression, the functional dependence of each term 
with respect to ( )Nn vec=  is emphasized. First, notice 

that ( )n,DMLC  is minimal and null when ( ) ( )0n ,, e= .

Therefore, the same result holds for ( )n,SMLC  because 

( ) 0, >nα  (with probability one). 

Let us set e−=∆ . After a series expansion of  ( )n,α
and ( )n,DMLC  around e= and 0n = , and keeping only 

the first non vanishing terms, we obtain: 
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where H is the Hessian matrix of the DMLC  criterion and 

( ) ( ) ( ) ( ) ( ) 0ˆ, ≠= es
H

ee
H

ese UARAU0 xα . Therefore 

criterion SMLC  is equivalent at high SNR to 

( ) ( ) PM
DMLe C −n0 ,,α , which proves that minimisation of 

( )SMLC  and ( )DMLC  are equivalent for bearings. 
�

4. ASYMPTOTIC DISTRIBUTION OF SML 

From now on, concerning signal sources, we are in 
the stochastic model framework of section 3 and we note  

( )SMLCminargˆ =  the SML estimator. The next  theorem 

establishes the asymptotic distribution of ˆ  and the proof 
of its non gaussianity. 

Theorem 2 

When 0→σ , )ˆ(
1~

e−=
σ

 is asymptotically 

distributed as yC  where: 

-    y is a 1×P  standard Gaussian vector; 
- C is a PP ×  random matrix which is independent of 
vector y and whose distribution is detailed below. 
The matrix C such that 
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where: 
-     � is the Hadamard product ; 
- W  is complex Wishart distributed with T degrees of 
freedom and parameter matrix the covariance  of signals 
sources; 
- DAA)(AAIDH 1 ][ HHH −−= ,                          (11) 
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Proof of theorem 2 

Using theorem 1, at high SNR, both criterions SMLC and 
DMLC are equivalent for bearing estimation. Therefore 

consider ˆ  is obtained by minimisation of the DMLC 
given by (4), although the signals sources are stochastic. 
We first study, at high SNR (small σ ²), the conditional 

distribution ( )X
~

f  of 
~

 given X (equation (3)). This 

asymptotic distribution is Gaussian, with a covariance 
given by the deterministic Cramer Rao lower bound DB

[2] 
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xR̂ (and thus T
xR̂ ) are complex Wishart distributed with T

degrees of freedom, and parameter matrix  the 

covariance of signals sources. Let us set T
D CCB =  the 

Cholesky factorisation of the 
~

 covariance conditionally 

X . Therefore, the asymptotic distribution of 
~

 is the 
distribution of yC  where y  is a complex  standard 

Gaussian random vector. Removing the conditioning on 
the signals sources, result of theorem 2 is obtained with 

T
xRW ˆ= .

�



Corollary 1 
With the notation of theorem 2, the asymptotic covariance 

of 
~

 is given by  

( ) [ ]{ }[ ]1Re
2

1~
cov −= WH�E

T
.              (14) 

Corollary 2  
For a single source, for which the maximum likelihood 

estimator amounts to a beamformer, 
~

 is asymptotically 
distributed as TkS2  where TS2  is a Student random 

variable with 2T degrees of freedom and k is given by   

SBk 20
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= ,                           (15)

where SB  is the stochastic Cramer Rao lower Bound. The 

asymptotic variance of 
~

 is given by 

( )
1
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−
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T
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and the stochastic maximum likelihood estimator is not 
efficient. 

Proof  
For a single source with power Σ, theorem 2 shows that  

,
~ a.d. yc⎯⎯→⎯                               (17) 

where y follows a standard normal law (mean value 0 and 
variance 1) and 
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According to [3], for a single source, the stochastic 
Cramer Rao lower bound is equal to 
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Furthermore, 

( ) ,~
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where 2
2Tχ  is a chi-square random variable with 2T

degrees of freedom. When X  follows a standard normal 

law and 2
Nχ  is independent of X, the ratio NX N

2χ
follows a Student distribution with N degrees of freedom. 
Under these conditions, by rising (20) and (21) in (18) and 
(17) we obtain (15). 
Furthermore, ( )2)var( −= NNSN , and therefore the 

asymptotic covariance of  
~

 is given by ( )12 −TTk .

Since ( ) 11 >−TT , the maximum likelihood estimator is 

not asymptotically efficient in SNR for finite T.
�

5. SIMULATION EXAMPLES 

Let us consider an Uniform Linear Array (ULA) of four 
sensors with half-wavelength spacing with sources located 
at broadside. We first investigate the case of single source 
where we have established the estimated DOA’s 
distribution. Secondly, the two sources case is 
investigated. 

5.1 Single source case 

In this case, it is easily shown from equation (8) that 
SMLC and DMLC provide the same estimates whatever 
SNR. In the case of a source vector, whose norm is 
independent of the DOA, these criterions amount to a 
classical beamformer. This is a particular case of theorem 
1 for which both criterions are rigorously identical.  

Let us consider the DOA estimation of a single source 
located at zero degree with T=2 snapshots. Figure 1 
represents the MLE empirical variance (Monte-Carlo 
simulations are conducted with 10000 independent 
realizations), the stochastic Cramer Rao lower bound, and 
the asymptotic theoretical variance given by (16). Here, it 
is twice the Cramer Rao lower bound. There is a very 
good agreement between theoretical results and 
simulations ( ( ) 21 =−TT ).

Figure 1: Asymptotic performance of SML estimator (one source) 

Figure 2 gives an histogram of ML estimated DOA 
conducted with 10000 Monte-Carlo simulations, for an 
SNR of 30dB. It is in very good adequacy with the 
theoretical Student law previously established: for
comparison, we also reported the probability density 
function of a Gaussian distribution with the same variance 



which is clearly not in adequacy with the distribution of 
estimates. 

Figure 2: Comparison of  estimated bearing distribution and Student 
distribution with variance given equation (16). 

5.2 Two sources case

Let us now consider the case of two sources with same 
power located at – 7.5 deg and 7.5 deg. The ML DOA 
estimation is conducted with a Gauss Newton algorithm 
(initialised at the true value) and T=3 snapshots. We 
reported in Figure 3 the evolution of the SML and DML 
empirical variance (conducted with 10000 Monte Carlo 
simulations), of the theoretical variance (14), and the 
stochastic Cramer Rao lower bound. For lack of an 
analytic expression of (14), the expectation has been 
estimated by average of 10000 Monte Carlo trials. We 
note a good agreement between theoretical results and 
simulations. We can also note the non efficiency of SML 
at high SNR. 

  Figure 3 : Asymptotic performance of SML estimator (two sources) 

Figure 4 gives the histograms of  the estimated DOA
corresponding to the previous case. 10000 trials have been 
performed to compute these histograms (for two sources 
with the same power and a SNR of 30 dB). Again we note 
that the probability density function of estimates is not 
Gaussian. 

Figure 4: Comparison of  estimated bearing distribution and Gaussian 
distribution with a variance equal to empirical variance. 

6. CONCLUSION 

In this paper, we have shown that the maximum likelihood 
estimator is asymptotically (in SNR) non efficient and non 
Gaussian. Analytical expression of the variance has been 
derived for the single source case. The analytic extension 
to the multiple sources case is under investigation. 
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