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ABSTRACT

In this paper, we derive the Multidimensional Statistical Resolution
Limit (MSRL) to resolve two closely spaced targets using a widely
spaced MIMO radar. Toward this end, we perform a hypothesis test
formulation using the Generalized Likelihood Ratio Test (GLRT).
More precisely, we link the MSRL to the minimum Signal-to-Noise
Ratio (SNR) required to resolve two closely spaced targets, for a
given probability of false alarm and for a given probability of de-
tection. Finally, theoretical and numerical analysis of the MSRL are
given for several scenarios (known/unknown parameters of interest
and known/unknown noise variance) including lacunar arrays.

INDEX TERMS1

Multidimensional statistical resolution limit, MIMO radar, perfor-
mance analysis.

1. INTRODUCTION

Based on the attractive Multi-Input Multi-Ouput (MIMO) commu-
nication theory, the MIMO radar has been received an increasing
interest [1]. The advantage of the MIMO radar is the use of multi-
ple antennas to simultaneously transmit several noncoherent known
waveforms and exploits multiple antennas to receive the reflected
signals (echoes).
One can find a plethora of algorithm for target localization using
a MIMO radar and some related minimal bounds (see [1–4] and
references therein). However their ultimate performance in terms
of the Statistical Resolution Limit (SRL) has not been fully investi-
gated. The SRL [5–9], defined as the minimal separation between
two signals in terms of the parameter of interest allowing a correct
source resolvability, is a challenging problem and an essential tool
to quantify the estimator performance.
To the best of our knowledge, no results are available concerning
the SRL for a MIMO radar with widely separated arrays (i.e., where
the transmitter and the receiver are far enough so that they do not
share the same angle variable [2, 4]). The goal of this paper is to
fill this lack. More precisely, the relationships between the Mul-
tidimensional SRL (MSRL) and the minimum SNR, required to
resolve two closely spaced signal sources using a MIMO radar are
investigated. The cases of known/unknown parameters of interest
and known/unknown nuisance parameters are studied. With a sim-
ilar methodology as [7], we perform a hypothesis test formulation
(detection approach) using the Generalized Likelihood Ratio Test

1This project is funded by region Île de France and Digeteo Research
Park.

(GLRT). The choice of this strategy is motivated by the nice property
of the GLRT (i.e., it is an asymptotically Uniformly Most Powerful
(UMP) test among all the invariant statistical tests [10]. This is the
strongest statement of optimality that one could hope to obtain).
Furthermore, in this paper, it is shown that the proposed test has the
same behavior compared to the (ideal) clairvoyant detector in the
Neyman-Pearson sense.
Consequently, in this paper, we derive closed form expressions of the
MSRL in known/unknown parameters of interest and known/unknown
nuisance parameters. Finally, theoretical and numerical analysis of
the MSRL are given for several scenarios including lacunar arrays.

2. PROBLEM SETUP

2.1. Model setup

The output of a bistatic MIMO radar (in the case of widely spaced
arrays with two targets) [4] is described for the �-th pulse as follows:

X� =

2∑
m=1

ρme2iπfm�aR(ω(R)
m )aT (ω(T )

m )T S + W�, � ∈ [0 : L − 1]

where L, ρm, fm denote the number of samples per pulse pe-
riod, a coefficient proportional to the Radar Cross-Section (RCS),
the normalized Doppler frequency of the m-th target. Whereas,
aT (.), aR(.), S and W� denote the receiver steering vector, the
transmitter receiver steering vector, the source matrix and the noise
matrix for the �-th pulse, respectively. The upper-script letter T
denotes the transpose operator, whereas, upper/sub-script calli-
graphic letters T andR denote the transmitter and the receiver part,
respectively. The i-th elements of the steering vectors are given
by [aT (ω

(T )
m )]i = ejω

(T )
m d

(T )
i and [aR(ω

(R)
m )]i = ejω

(R)
m d

(R)
i

where ω
(T )
m = 2π

ν
sin(ψm) and ω

(R)
m = 2π

ν
sin(θm) in which

ψm is the angle of the target with respect to the transmit array
(i.e., DOD), θm is the angle of the target with respect to the re-
ception array (i.e., DOA), ν is the wavelength. The distance be-
tween a reference sensors (the first sensor herein) and the i-th
sensor is denoted by d

(T )
i and d

(R)
i for the transmission and the

reception arrays, respectively (e.g., in the case of Uniform Linear
Transmission Array (ULTA), d

(T )
i = (i − 1)dT where dT is the

inter-element space between two successive transmission sensors).
The known source matrix is given by S =

[
s0 . . . sNT −1

]T

where sNt =
[
sNt(1) . . . sNt(T )

]T , in which NT and T
denote the number of transmission sensors and the number of snap-
shots, respectively. The diversity of the MIMO radar in terms of
waveform coding allows to transmit orthogonal waveforms [2], i.e.,
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SSH = S∗ST = T INT . After matched filtering, one obtains
Y� = 1√

T
X�S

H =
∑2

m=1 αme2iπfm�aR(ω
(R)
m )aT (ω

(T )
m )T +Z�

where αm =
√

Tρm andZ� = 1√
T
W�S

H denotes the noise matrix
after the matched filtering. It is straightforward to rewrite the above
matrix-based expression as a vectorized CanDecomp/Parafac [3,11]
model of dimension P = 3 according to

y = [vec(Y0)
T . . . vec(YL−1)

T ]T = x + z (1)

where z = [zT
0 . . . zT

L−1]
T with z� = vec(Z�) and

x =

2∑
m=1

αm

(
c(fm) ⊗ aT (ω(T )

m ) ⊗ aR(ω(R)
m )

)
(2)

in which c(fm) = [1 e2iπfm . . . e2iπfm(L−1)]T and where ⊗ de-
notes the Kronecker product.

2.2. Statistic of the observation

Assuming that the complex Gaussian noise interferences (before the
matched filtering) are independent and identically distributed (IID)
samples with zero-mean and a covariance matrix σ2I [1] (the clutter
and jammer echoes are not considered in this work) and thanks to
the orthogonality of the waveforms, one can notice that E(z�z

H
� ) =

1
T

(S∗ ⊗ INR)E(vec(W�)vec(W�′)
H)(ST ⊗ INR) = σ2INT NR

and E(z�z
H
�′ ) = 0 for � �= �′ in which NR denotes the number

of receiver sensors. Thus, E(zzH) = σ2ILNT NR . Consequently,
the observation follows a complex Gaussian distribution according
to y ∼ CN (x, σ2ILNT NR).

2.3. Assumptions

Throughout the rest of the paper, the following assumptions are as-
sumed to hold: A1) The signal sources and the array geometry
are known. A2) For sake of simplicity the Doppler frequencies
are assumed to be equal f1 = f2 = f (or even null). Neverthe-
less, numerical simulations will show that the derived MSRL (with
equal Doppler frequency assumption) has the same behavior com-
pared to the clairvoyant detector. A3) Finally, we consider α1, α2

as unknown unequal deterministic parameters (note that both case of
known and unknown σ2 are studied in the remaining of the paper.)

3. DETECTION APPROACH

3.1. Hypothesis test formulation

Resolving two closely spaced sources, with respect to their param-
eter of interest ω

(T )
m and ω

(R)
m , can be formulated as a binary hy-

pothesis test [7, 8]. The hypothesis H0 represents the case where
the two emitted signal sources are combined onto one signal (i.e., it
represents the case of two unresolvable targets), whereas the hypoth-
esisH1 embodies the situation where the two signals are resolvable.
Thus, one obtains the following binary hypothesis test:{

H0 : (δR, δT ) = (0, 0),

H1 : (δR, δT ) �= (0, 0),
(3)

where the so-called Local SRLs (LSRL) are given by δT
Δ
=

ω
(T )
2 − ω

(T )
1 and δR

Δ
= ω

(R)
2 − ω

(R)
1 . Since the LSRLs are

unknown, it is impossible to design an optimal detector in the
Neyman-Pearson sense. Alternatively, the Generalized Likelihood
Ratio Test (GLRT) statistic [10] is a well known approach appro-
priate to solve such a problem. The GLRT statistic is expressed
as G(y) = p(y;δ̂R,δ̂T ,ρ̂1,H1)

p(y;ρ̂0,H0)
≷H1

H0
η′, in which p(y; ρ̂0,H0) and

p(y; δ̂R, δ̂T , ρ̂1,H1) denote the probability density function of the
observation under H0 and H1, respectively. Where η′, δ̂R, δ̂T and
ρ̂i denote the detection threshold, the Maximum Likelihood Esti-
mate (MLE) of δR and δT underH1 and the MLE of the parameter
vector ρi (containing all the unknown nuisance and/or unwanted
parameters) underHi, i = 0, 1.

One can easily see that the derivation of δ̂R and δ̂T is a nonlinear
optimization problem, which is analytically intractable. Using the
fact that the separation is small (this assumption can be argued by
the fact that the high resolution algorithms have asymptotically an
infinite resolving power [12]), one can approximate the model (2)
into a model which is linear w.r.t. the unknown parameters.

3.2. Linear form of the MIMO model

First, let us introduce the so-called center parameters ω
(T )
c

Δ
=

ω
(T )
1 +ω

(T )
2

2
and ω

(R)
c

Δ
=

ω
(R)
1 +ω

(R)
2

2
. Second, using the first or-

der Taylor expansion around δT = 0 and δR = 0 of (2), one
obtains aT (ω

(T )
1 ) = aT (ω

(T )
c ) − j

2
δT ȧT (ω

(T )
c ), aR(ω

(R)
1 ) =

aR(ω
(R)
c )− j

2
δRȧR(ω

(R)
c ), aT (ω

(T )
2 ) = aT (ω

(T )
c )+ j

2
δT ȧT (ω

(T )
c )

and aR(ω
(R)
2 ) = aR(ω

(R)
c ) + j

2
δRȧR(ω

(R)
c ), where ȧT (.)

Δ
=

aT (.)�dT , and ȧR(.)
Δ
= aR(.)�dR in which dT = [d

(T )
0 d

(T )
1 . . . d

(T )
N−1]

T ,
dR = [d

(R)
0 d

(R)
1 . . . d

(R)
N−1]

T and � denoting the Hadamard prod-
ucts. Thus, one can approximate (1) by the following expression

y = Gζ + z, (4)

where the (LNT NR)×4matrixG is defined asG =
[
�1 �2 �3 �4

]
in which �1 = c(f) ⊗ aT (ω

(T )
c ) ⊗ aR(ω

(R)
c ), �2 = c(f) ⊗

aT (ω
(T )
c ) ⊗ ȧR(ω

(R)
c ), �3 = c(f) ⊗ ȧT (ω

(T )
c ) ⊗ aR(ω

(R)
c )

and �4 = c(f) ⊗ ȧT (ω
(T )
c ) ⊗ ȧR(ω

(R)
c ). The unknown 4 × 1

parameter vector is given by

ζ =

⎡
⎢⎢⎣

α1 + α2
j
2
δR(α2 − α1)

j
2
δT (α2 − α1)

−1
4

δRδT (α1 + α2)

⎤
⎥⎥⎦ . (5)

In the remaining of this paper, the parameters ω(T )
c and ω

(R)
c (which

represent the center parameters) are assumed to be known [8] or pre-
viously estimated [7]. In the following, we use the linear form of the
signal model (4). Both cases of known and unknown noise variance
will be considered.

4. DERIVATION AND ANALYSIS OF THE MSRL

4.1. Case of known noise variance

Using the linear form in (4), the binary hypothesis test in (3) can be
re-formulated as follows{

H0 : P ζ = 0,

H1 : P ζ �= 0,
(6)

where P =
[
0 I3

]
is a selection matrix and where ρ is reduced to

an empty vector. Note that the test (6) is connected to the so-called
Multidimensional SRL (MSRL), defined as δ � [δR δT δT δR]T

according to P ζ = Qδ in which Q = diag{ j
2
(α2 − α1),

j
2
(α2 −

α1),
−1
4

(α1 + α2)}. The hypothesis test (6) is a detection prob-
lem of a deterministic signals in unknown parameters and known
noise variance [10] where the GLRT statistic yields to TK(y) =

2
σ2 ζ̂

H
P T

(
P

(
GHG

)−1
P T

)−1

P ζ̂ ≷H1
H0

ηK where the subscript
K stands for the case of Known noise variance. The MLE of ζ is
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given by ζ̂ = G‡y where G‡, the pseudo inverse matrix, is given
by G‡ =

(
GHG

)−1
GH . The value of ηK is conditioned by the

choice of the probability of false alarm Pfa and the probability of
detection Pd. The performance of the latter hypothesis test is char-
acterized by Pfa = Qχ2

6
(ηK) and Pd = Qχ2

6(λK(Pfa,Pd))(ηK) [10]
where χ2

6 and χ2
6 (λK (Pfa, Pd)) denote the central and the non-

central chi-square distribution of 6 degrees of freedom2, respectively,
in which Qχ2

6
(.) and Qχ2

6(λ(Pfa,Pd))(.) denote the right tail of the
pdf χ2

6 and the pdf χ2
6(λ (Pfa, Pd)), respectively. Furthermore, the

non-centrality parameter is given by

λK (Pfa, Pd) =
2

σ2
δT Q∗

(
P

(
GHG

)−1

P T

)−1

Qδ. (7)

On the other hand, one should notice that λK (Pfa, Pd) can be
derived for a given Pfa and Pd as the solution of Q−1

χ2
2
(Pfa) =

Q−1

χ2
2(λ(Pfa,Pd))

(Pd) [8]. Consequently, one obtains

SNRK
Δ
=

trace
{

SSH
}

Tσ2
=

NT λK (Pfa, Pd)

2δT Q∗
(

P
(
GHG

)−1 P T
)−1

Qδ
. (8)

To simplify (8), one should note that GHG = L

[
NT NR κT

κ Φ

]

since ‖�1‖2 = LNT NR and Φ =

⎡
⎣f0,2 f1,1 f1,2

f1,1 f2,0 f2,1

f1,2 f2,1 f2,2

⎤
⎦, κ =

[
f0,1 f1,0 f1,1

]H , where fp,q =
∑NT

nt=1

(
d
(T )
nt

)p ∑NR
nr=1

(
d
(R)
nr

)q

.
Using the inversion lemma [13], one obtains(
GHG

)−1
= 1

L

[
1
β

− 1
β
κT Φ−1

− 1
β
Φ−1κ Φ−1 + 1

β
Φ−1κκT Φ−1

]
where

the Schur complement is β = NT NR − κT Φ−1κ. Multiplying(
GHG

)−1 by P on the left and by P T on the right has the ef-
fect to eliminate the first column and the first row of

(
GHG

)−1.

Thus,
(
P

(
GHG

)−1
P T

)−1

= 1
L

(
Φ−1 + 1

β
Φ−1κκT Φ−1

)−1

.
Consequently, using the Woodbury formula [13], one obtains(

P
(
GHG

)−1

P T

)−1

= L

(
Φ − 1

NT NR
κκT

)
. (9)

Denoting K
�
= 1

NT

(
Φ − 1

NT NR
κκT

)
and plugging (9) into (8),

one obtains:

Result 1 The relationship between the MSRL δ and the minimum
SNR, required to resolve two closely spaced sources, is then given
by

SNRK =
λK (Pfa, Pd)

2LδT Q∗KQδ
. (10)

4.2. Case of unknown noise variance

One can extend the latter analysis to the case of unknown noise vari-
ance σ2 (i.e., ρ is reduced to the scalar σ2). The binary hypothesis
test becomes then{

H0 : P ζ = 0 with σ2 unknown,
H1 : P ζ �= 0 with σ2 unknown.

(11)

2Since, Pζ ∈ C3×1, thus the degree of freedom of the considered chi-
squared pdf is equal to 6 instead of 3 in the real case.

The hypothesis test formulated in (11) is a detection problem
of a deterministic signals in unknown parameters and unknown
noise variance [10]. Its GLRT statistic is given by TU(y) =
yH(G‡)H

P T
(

P (GHG)−1
P T

)−1
P G‡y

yHP ⊥
G

y
≷H1

H0
ηU, in which the sub-

script U stands for Unknown noise variance and where P ⊥
G =

I − GG‡ denotes the orthogonal projection matrix. The per-
formance of the later hypothesis test is characterized by Pfa =
QF6,LNT NR−6(ηU) and Pd = QF6,LNT NR−6(λU(Pfa,Pd))(ηU)

[10], where F6,LNT NR−6 and F6,LNT NR−6 (λU(Pfa, Pd)) denote
the central and the non-central F distribution with 6 andLNT NR−6
degree of freedom, respectively. The non-centrality parameter is
given by3

λU (Pfa, Pd) =
2

σ2
ζHP T

(
P

(
GHG

)−1

P T

)−1

P ζ. (12)

Note that, λU (Pfa, Pd) can be derived for a given Pfa and Pd as the
solution ofQ−1

F6,LNT NR−6
(Pfa) = Q−1

F6,LNT NR−6(λ(Pfa,Pd))
(Pd)

[8]. Thus, using (9) and (12) one has:

Result 2 The relationship between the MSRL δ and the minimum
SNR, required to resolve two closely spaced sources with unknown
noise variance, is then given by

SNRU =
λU (Pfa, Pd)

2LδT Q∗KQδ
. (13)

4.3. The ideal (clairvoyant) detector

In Result 1 and 2 we have derived the MSRL using the GLRT (re-
call that the Neyman-Pearson test cannot be conducted due to the
fact that δ is an unknown parameter). Thus, it is interesting to
compare SNRK and SNRU with the SNR associated with the clair-
voyant Neyman-Pearson test (where all the parameter are known
even δ). Toward this aim, one can consider the new observation
y′ Δ

= y − (α1 + α2)c(f) ⊗ aT (ω
(T )
c ) ⊗ aR(ω

(R)
c ). Thus, it can

be shown that y′ = GP T P ζ + z = GP T Qδ + z, leading to the
following binary hypothesis test{

H0 : y′ = z,

H1 : y′ = GP T Qδ + z.
(14)

The hypothesis test in (14) is a detection problem of a known deter-
ministic signal in a known variance complex white Gaussian noise,
which is a mean-shifted Gauss-Gauss detection problem such that

TC(y′) ∼
{
H0 : CN (0, σ2E

2
)

H1 : CN (E , σ2E
2

)
[10], where the subscript C stands

for the Clairvoyant case, in which E = 2
σ2 δT Q∗P GHGP T Qδ =

2
σ2 δT Q∗ΦQδ. On the other hand, the detection performance are
given by λC(Pfa, Pd) =

(
Q −1 (Pfa) − Q −1 (Pd)

)2, in which λC

denotes the so-called deflection coefficient, whereas Q −1(.) is the
inverse of the right-tail of probability function for a Gaussian random
variable with zero mean and unit variance. Consequently, denoting
K ′ = 1

NT
Φ, one has

Result 3 The relationship between the MSRL δ and the minimum
SNR, required to resolve two closely spaced sources in the optimal

3Note that for the same Pfa and Pd, λK

(
Pfa, Pd

) �= λU

(
Pfa, Pd

)
.

Meaning that for the same Pfa and Pd the noise variance σ2and/or the
MSRL will differ in the known/unknown variance case (see (7) and (12)).
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(clairvoyant) case, is then given by

SNRC =
λC (Pfa, Pd)

2LδT Q∗K ′Qδ
. (15)

5. ANALYSIS OF THE MSRL

This section is devoted to the theoretical and numerical analysis of
the MSRL (or equivalently their corresponding minimal SNRs).

- First, let us compare the derived SNR in i) the clairvoyant case,
ii) the unknown parameters with known noise variance case and iii)
the unknown parameters with unknown noise variance case. On one
hand, from (10), (13) and (15) one obtains

SNRC

SNRK
= ρ

λC(Pfa, Pd)

λK(Pfa, Pd)
where ρ =

δT Q∗KQδ

δT Q∗K ′Qδ
(16)

and SNRK

SNRU
=

λK(Pfa, Pd)

λU(Pfa, Pd)
. (17)

On the other hand, note that: P1) for any Pd > Pfa one has
λC(Pfa, Pd) < λK(Pfa, Pd) < λU(Pfa, Pd) [7], P2) the Hermi-
tian matrix Ω = K ′ − K = κ0κ

H
0 where κ0 = Q∗κ/

√
NT NR

is a positive semi-definite matrix. Thus, ρ ≤ 1. Consequently, from
(16), (17), P1 and P2 one deduces, as expected, that for fixed Pfa

and Pd (such that Pd > Pfa) one has SNRC < SNRK < SNRU.
In Fig. 1 we have reported the LSRL w.r.t. δR in the clairvoyant,
the known noise variance and the unknown noise variance cases ver-
sus the SNR (the same conclusion are done also for the LSRL w.r.t.
δT ). One can notice that the LSRLs derived in the case of known
and unknown noise variance cases have the same behavior than the
one in the clairvoyant case. For the same MSRL (i.e., for a fixed δT
and δR), the gap between SNRK and SNRU is exclusively due to the
non-centrality parameters λK(Pfa, Pd) and λU(Pfa, Pd). This gap
is approximatively equal to 1dB. Whereas, the gap between SNRC

and SNRK is due to both: i) the ration of the deflection coefficient
λC(Pfa, Pd) over the non-centrality parameter λK(Pfa, Pd), and,
ii) the norm of Ω which reflects the value of ρ. This latter gap, is
evaluated to 9 dB.

- Second, the effect of missing sensors is considered herein. Let
us consider different scenarios. In each scenario we have the same
transmitter ULA withNT = 10 sensors but different receiver arrays
(from a scenario to an other) having the same array aperture. Let
us denote these receiver arrays by ANR where NR represents the
number of sensors in the lacunar receiver arrays. In Fig. 2 we plot the
LSRL for the receiver (i.e., we focus only on δR, the case of δT has
the same behavior) for different ANR with NR ∈ {5, 7, 8, 9, 10}.
This figure represents qualitatively the loss due to a missing sensors
(but for the same array aperture) which is evaluated to 3dB.

6. CONCLUSION

In this paper, we have derived the Multidimensional Statistical Res-
olution Limit (MSRL) for two closely spaced targets using a widely-
spaced MIMO radar (made from possibly non-uniform/lacunar
transmitter and receiver arrays). Toward this goal, we have con-
duct a hypothesis test approach. More precisely, we have use the
Generalized Likelihood Ratio Test (GLRT). This analysis provides
useful information concerning the behavior of the MSRL and the
minimum SNR required to resolve two closely spaced targets for a
given probability of false alarm and a given probability of detection.
Finally, numerical simulations shows that the derived MSRL has the
same behavior compared to the clairvoyant (ideal) detector.

Fig. 1. The LSRL versus the required SNR to resolve two closely
targets for L = 4, a transmitter and a receiver ULA with NT =
NR = 4 and T = 100.

Fig. 2. The LSRL versus the required SNR to resolve two closely
targets for T = 100, L = 10, a transmitter ULA withNT = 10 and
for different ANR of NR ∈ {5, 7, 8, 9, 10}.
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