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ABSTRACT

In this paper, we study the impact of modeling error on the receiver
of a MIMO radar. Following other works on classical array process-
ing, we derive closed-form expressions of the Cramér-Rao bounds
for an observation model of a widely spaced MIMO radar affected by
modeling error. We show that, as the signal-to-noise ratio increases,
the Cramér-Rao bound and the mean square error of the maximum
likelihood estimator of the angle-of-arrival do not fall to zero (con-
trary to the classical case without error modeling) and converge to a
fixed limit for which we give a closed-form expression. Moreover,
we give a simple closed-form expression of the critical value of the
signal-to-noise ratio where this limitation of performance appears.

Index Terms– MIMO radar, modeling error.

1. INTRODUCTION

A Multi-Input Multi-Output (MIMO) radar is a system that uses si-
multaneously multiple antennas which both transmit and receive a
set of probing waveforms to collect the targets information. The
probing waveforms can be fully uncorrelated or partially correlated.
The conventional phased array radar is a case of MIMO radar where
all the transmitted waveforms are correlated. It is now known that
a MIMO radar system has many advantages in comparison with a
phased-array radar in terms of detection/estimation (see, e.g. [1] and
[2]).

However such good performance can be achieved only when
the observation model of the MIMO radar is well known because
the powerful detection/estimation techniques used are often based
on statistically optimal algorithms such as the maximum likelihood
technique. Indeed, in the literature, the system model is supposed to
be correct, i.e. the array response is supposed to be precisely known.
However, in practice, the assumed model is different from the true
one due to the variation of array element positions or the differences
in element patterns. Even though this mismatch is usually regulated
by a calibration procedure, the imperfections in the array still exist
and degrade the system performance. Besides, a precious calibration
procedure is expensive and time consuming. Hence, it is important to
investigate the modeling errors in radar system to reduce the require-
ments without a noticeable degradation in the performance. This is
why, in this paper, we focus on the influence of modeling error at the
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receiver of a MIMO radar on the localization of a target. We consider
for this analysis the so-called widely separated MIMO radar with lin-
ear arrays (possibly non-uniform or lacunar) where the localization
parameter of the target are the angle-of-departure and the angle-of-
arrival. In the literature, there are few results for the behavior of
MIMO radar in the presence of modeling errors. Mainly, an anal-
ysis via performance bounds of MIMO radar affected by modeling
errors can be found in [3], [4], [5] and [6]. However, in these work
only phase synchronization error are studied. Also, some works have
been done in passive array processing. One can cite [7], [8] and re-
cently [9]. Our approach follows the idea presented in [9] where
the error is modeled by a Gaussian random vector added to the true
steering vector.

In this work, we derive the Cramér-Rao bound w.r.t unknown
target parameters in the context of MIMO radar in which the receiver
suffers from an array response error. Then, the proposed closed-
form expressions are analyzed and it is shown that the Cramér-Rao
bound and the mean square error of the maximum likelihood esti-
mator of the angle-of-arrival do not fall to zero (contrary to the clas-
sical case without modeling error) and converge to a fixed limit for
which we give a closed-form expression. Moreover, we give a sim-
ple closed-form expression of the critical value of the signal-to-noise
ratio where this limitation of performance appear.

2. PROBLEM SETUP

We consider a MIMO radar equipped with well separated transmit-
ting and receiving arrays. Both arrays are assumed to be central-
symmetric linear arrays where the numbers of transmit and receive
antennas are denoted M and N , respectively. In this context, a point
target is located by two parameters: the angle-of-departure denoted
by θD and the angle-of-arrival denoted by θA. Consequently, the
observation model is given by:

y(t) = βb(θA)aT (θD)x(t) + n(t), t = 1 . . . T, (1)

where T is the number of snapshots. The complex quantity β is the
target complex amplitude related to the radar-cross-section (RCS) of
the target. The vector x(t) contains M transmitted waveforms. We
assume that these waveforms are orthogonal and have the following
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empirical covariance matrix:

Rx =
1

T

T∑
t=1

x(t)xH(t) = σ2
xIM. (2)

The steering vectors have the following structures

a(θD) =[
exp

(
−j

2π

λ
a1 sin θD

)
, . . . , exp

(
−j

2π

λ
aM sin θD

)]T

, (3)

and

b(θA) =[
exp

(
−j

2π

λ
b1 sin θA

)
, . . . , exp

(
−j

2π

λ
bN sin θA

)]T

, (4)

where λ is the wavelength, where the quantities ai, i = 1 . . . M ,
and bj , j = 1 . . . N , are the nominal sensor positions (w.r.t. a ref-
erence point) of transmitting and receiving arrays, respectively. Fi-
nally, the noise vectors {n(t)}T

t=1 are assumed to be independent
and identically distributed circularly symmetric complex Gaussian
with zero-mean and covariance matrix Rn = σ2

nIN .
In this paper, we consider that the true steering vector of the re-

ceiving array, btrue(θA), is subject to a modeling error represented
by an additive random vector e. In other words,

b(θA) = btrue(θA) + e, (5)

where e is assumed to be jointly circular and Gaussian distributed,
namely e ∼ CN (0, σ2

eIN ). Moreover, e is assumed to be statis-
tically independent of the noise vector n(t), ∀t. Consequently, the
complex data vector received by such a MIMO radar can be written
as

y(t) = βbtrue(θA)aT (θD)x(t) + βeaT (θD)x(t) + n(t). (6)

The unknown parameters vector is Θ = [θD, θA, βR, βI ]
T

where
βR and βI denote the real part of β and the imaginary part of β, re-
spectively.

Finally, note that1 in this case the likelihood of the observations
is complex circular Gaussian distributed with both parameterized

mean and covariance matrix, i.e., by letting y =
[
yT (1) . . .yT (T )

]T ∈
C

NT , y|Θ ∼ CN (m(Θ),R(Θ)) where

m(Θ) =

vec
([

βbtrue(θA)aT (θD)x(1) . . . βbtrue(θA)aT (θD)x(T )
])

,

where vec (.) denotes the vec operator and

R(Θ) = |β|2 σ2
es(θD)sH(θD) ⊗ IN + σ2

nINT , (7)

where

s(θD) =
[
aT (θD)x(1) . . . aT (θD)x(T )

]T

. (8)

We note that the full parameter vector parameterizes the mean
while only θD, βR, and βI parameterize the covariance matrix of
the observations.

1This is quite different from the classical case (in the MIMO radar context
or in the array processing context) where only the mean or the covariance
matrix are parameterized. Note also that the analysis of modeling error on
both transmitter and receiver seems to be a very complex work. Indeed, in
this case the observations vector is the sum of a deterministic vector plus a
Gaussian vector plus the product of two Gaussian vector depend on the first
Gaussian vector.

3. CRAMÉR-RAO BOUND

For a general Gaussian parameterized model such that

y|Θ ∼ CN (m(Θ),R(Θ)), (9)

it is well known that the element (i, j) of the Fisher information
matrix F (Θ) is given by the Slepian-Bang formula (see, e.g., [10])

{F (Θ)}i,j = Tr

{
R−1(Θ)

∂R(Θ)

∂ {Θ}i

R−1(Θ)
∂R(Θ)

∂ {Θ}j

}

+2Re

{
∂mH(Θ)

∂ {Θ}i

R−1(Θ)
∂m(Θ)

∂ {Θ}j

}
, (10)

where {Θ}i=1,...,4 denotes the ith element of the vector Θ. With-
out loss of generality, the reference points for the transmitting and
receiving arrays are chosen such that

aH(θD)ȧ(θD) = 0 and bH
true(θA)ḃtrue(θA) = 0, (11)

where we define ȧ(θD) = ∂a(θD)
∂θD

, and ḃtrue(θA) = ∂btrue(θA)
∂θA

.

Let us set ṡ(θD) =
[
ȧT (θD)x(1) . . . ȧT (θD)x(T )

]T
, after calcu-

lus, one obtains

R−1(Θ) =

1

σ2
n

(
IT − |β|2 σ2

e

σ2
n + |β|2 TMσ2

xσ2
e

s(θD)sH(θD)

)
⊗ IN , (12)

∂m(Θ)

∂θD
= vec

([
· · ·βbtrue(θA)ȧT (θD)x(t) · · ·

])
, (13)

∂m(Θ)

∂θA
= vec

([
· · ·βḃtrue(θA)aT (θD)x(t) · · ·

])
, (14)

∂m(Θ)

∂βR

= vec
([

· · ·btrue(θA)aT (θD)x(t) · · ·
])

, (15)

t = 1 . . . T

∂m(Θ)

∂βI

= j
∂m(Θ)

∂βR

, (16)

∂R(Θ)

∂θD
= |β|2 σ2

eIN ⊗
[
ṡ(θD)sH(θD) + s(θD)ṡH(θD)

]
, (17)

∂R(Θ)

∂θA
= 0, (18)

∂R(Θ)

∂βR

= 2βRσ2
es(θD)sH(θD) ⊗ IN , (19)

and
∂R(Θ)

∂βI

= 2βIσ2
es(θD)sH(θD) ⊗ IN . (20)

Note also that

ȧ =

[
· · · − j

2π

λ
ak cos(θD) exp

(
−j

2π

λ
ak sin θD

)
· · ·

]T

,

(21)
k = 1, . . . , M and

ḃ =

[
· · · − j

2π

λ
bk cos(θA) exp

(
−j

2π

λ
bk sin θA

)
· · ·

]T

, (22)
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k = 1, . . . , N. Plugging these results into Eqn. (10) and after te-
dious but straightforward calculus one obtains the elements of the
Fisher information matrix

{F (Θ)}1,1 =
8π2 |β|2 TNσ2

x

λ2σ2
n

cos2 (θD)
M∑

k=1

a2
k

×
(

1 +
|β|2 TMσ2

xσ4
e

σ2
n + |β|2 TMσ2

xσ2
e

)
, (23)

{F (Θ)}2,2 =
8π2

λ2 |β|2 TMσ2
x

σ2
n + |β|2 TMσ2

xσ2
e

cos2 θA

N∑
k=1

b2
k, (24)

{F (Θ)}3,3 = N

(
2βRTMσ2

xσ2
e

σ2
n + |β|2 TMσ2

xσ2
e

)2

+
2TNMσ2

x

σ2
n + |β|2 TMσ2

xσ2
e

, (25)

{F (Θ)}4,4 = N

(
2βITMσ2

xσ2
e

σ2
n + |β|2 TMσ2

xσ2
e

)2

+
2TNMσ2

x

σ2
n + |β|2 TMσ2

xσ2
e

, (26)

{F (Θ)}3,4 = {F (Θ)}4,3

= 4NβRβI

(
TMσ2

xσ2
e

σ2
n + |β|2 TMσ2

xσ2
e

)2

, (27)

and all the other elements of the Fisher information matrix are equal
to zero leading to a strong block diagonal structure (only βR and βI

are coupled).
Consequently, the Cramér-Rao bounds (i.e., the diagonal ele-

ments of the Fisher information matrix inverse) are given by

CRB (θD) =

λ2σ2
n(σ2

n+|β|2TMσ2
xσ2

e)
8π2|β|2TNσ2

x(σ2
n+|β|2TMσ2

xσ2
e(1+σ2

e)) cos2(θD)
∑M

k=1 a2
k

, (28)

and

CRB (θA) =
σ2

n + |β|2 TMσ2
xσ2

e

8π2

λ2 |β|2 TMσ2
x cos2 θA

∑N
k=1 b2

k

. (29)

Due to the lack of space we do not give the closed-form expres-
sions of CRB (βR) and CRB (βI) , which are less interesting and
which can easily be obtained from Eqn. (25), Eqn. (26) and Eqn.
(27).

4. SIMULATION RESULTS

In order to analyze the Cramér-Rao bounds behavior, we perform in
this Section some simulations. The scenario is the following: the
transmit and the receive arrays are uniform linear arrays of M = 4
and N = 4 sensors, respectively, with inter-element spacing (in unit
of wavelengths) is 0.5. The orthogonal MIMO radar waveforms
are generated using Hadamard codes with T = 32 snapshots. We
put the angle-of-departure and the angle-of-arrival of the target at
θD = 67.5o and θA = 22.5o and we assume that β = 1+j. The to-
tal transmitted power is Mσ2

x = 1. Figure 1 shows the Cramér-Rao

bounds for parameters of interest versus the Array Signal-to-Noise

Ratio (ASNR) where we define ASNR =
MNσ2

x
σ2

n
. Note that we do

not plot CRB (βI) since it has the same behavior as CRB (βR).
For comparison, we also draw the performance of the maximum
likelihood estimator (MLE) evaluated over 1000 Monte Carlo tri-
als. This first simulation represents the behavior of the Cramér-Rao
bounds and of the MLE without modeling error, i.e., with σ2

e = 0.
We note that one observes the classical behavior of the Cramér-Rao
bounds which decrease linearly when the ASNR increase (in dB).
We also note that the MLE reaches asymptotically the Cramér-Rao
bound (as ASNR → ∞) [11] and we observe the classical thresh-
old of the MSE of the MLE at low ASNR.
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Fig. 1. Maximum Likelihood estimator empirical mean square error
and Cramér-Rao bounds versus ASNR without modelling error

Figure 2 shows the behavior of the Cramér-Rao bounds and of
the MLE with error modeling where σ2

e = 0.1.
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Fig. 2. Maximum Likelihood estimator empirical mean square error
and Cramér-Rao bounds versus ASNR with σ2

e = 0.1.
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Again, we observe the asymptotic efficiency of the MLE but,
when ANSR → ∞, the Cramér-Rao bound and the MSE of the
MLE of the angle-of-arrival θA do not fall to zero and converge to a
fixed limit that can be derived from Eqn. (29) and which is equal to

lim
ASNR→∞

CRB (θA) =
σ2

e

8π2

λ2 cos2 θA

∑N
k=1 b2

k

. (30)

Note that this value is independent of β. This convergence means
that for a given "power" level of modeling error σ2

e, if the ASNR is
over a certain threshold value, no improvement on the estimation
performance can be done. Quantitatively, we calculate this threshold
value of the ANSR denoted ASNRthreshold as the value at which,
CRB (θA) = (1 + ε) × lim

ASNR→∞
CRB (θA). We obtain the fol-

lowing simple closed-form expression

ASNRthreshold = 10 log10

N

εσ2
eT |β|2 . (31)

This expression shows that ASNRthreshold is linear (in dB)
w.r.t. σ2

e. Note that the same behavior occurs on βR and βI , i.e.,
when ANSR → ∞, the Cramér-Rao bound and the MSE of the
MLE do not fall to zero and converge to a fixed limit which is given
by

lim
ASNR→∞

CRB (βR) =
σ2

e

(|β|2 + 2σ2
eβI

)
2N (1 + 2σ2

e)
, (32)

and

lim
ASNR→∞

CRB (βI) =
σ2

e

(|β|2 + 2σ2
eβR

)
2N (1 + 2σ2

e)
. (33)

Consequently, for a scenario where the number of sensors is
fixed and the array aperture too, the sensors’ positions can be used to
decrease this limit. Finally, we plotted on Figure 3 the Cramér-Rao
bounds versus σ2

e with ASNR = 20dB. Again, we note that both
θA and β are affected by the modeling error while θD is not affected,
due to the fact that the errors only affect the receiver.
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Fig. 3. Cramér-Rao bounds versus σ2
e with ASNR = 20dB

5. CONCLUSION

An investigation, by way of the Cramér-Rao bound, of the influence
of modeling error at the receiver of a widely separated MIMO radar
to localize a target was conducted. For that purpose, we have derived
closed-form expressions of the Fisher information matrix and shown
its block diagonal structure to deduce the Cramér-Rao bounds ex-
pressions of the angle-of-arrival and of the angle-of-departure. We
have shown that, under a certain signal-to-noise ratio, the perfor-
mance of the system can not be improved. Finally, we have proposed
a simple formula to evaluate this critical value of the signal-to-noise
ratio.

6. REFERENCES

[1] J. Li and P. Stoica, MIMO Radar Signal Processing. New
York: Wiley, 2009.

[2] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and
R. Valenzuela, “MIMO radar: an idea whose time has come,”
in Proc. of the IEEE Int. Conf. on Radar, Apr. 2004, pp. 71–78.

[3] H. Godrich, A. M. Haimovich, and H. V. Poor, “An analy-
sis of phase synchronization mismatch sensitivity for coher-
ent MIMO radar systems,” in Proc. Third International Work-
shop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), Dec. 2009.

[4] Q. He and R. S. Blum, “Cramér-Rao bound for MIMO radar
target localization with phase errors,” IEEE Signal Processing
Letters, no. 1, pp. 83–86, Jan. 2010.

[5] H. Godrich, A. M. Haimovich, and H. V. Poor, “Localiza-
tion performance of coherent MIMO radar systems subject to
phase synchronization errors,” in 4th International Symposium
on Communications, Control and Signal Processing (ISCCSP),
Mar. 2010.

[6] M. Akçakaya and A. Nehorai, “MIMO radar detection and
adaptive design under a phase synchronization mismatch,”
IEEE Transactions on Signal Processing, no. 10, pp. 4994–
5005, Oct. 2010.

[7] Y. Rockah and P.M.Schultheiss, “Array shape calibration us-
ing sources in unknown locations-part i: Far-field sources,”
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, no. 3, pp. 286–299, Mar. 1987.

[8] M. Viberg and A. L. Swindlehurst, “Analysis of the combined
effects of finite samples and model errors on array process-
ing performance,” IEEE Transactions on Signal Processing,
no. 11, pp. 3073–3083, Nov. 1994.

[9] A. Ferréol, P. Larzabal, and M. Viberg, “Statistical analysis of
the MUSIC algorithm in the presence of modeling errors, takng
into account the resolution probability,” IEEE Transactions on
Signal Processing, no. 58, pp. 4156–4166, Aug. 2010.

[10] S. M. Kay, Fundamentals of Statistical Signal Processing: Es-
timation Theory. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., Mar. 1993, vol. 1.

[11] A. Renaux, P. Forster, E. Chaumette, and P. Larzabal, “On
the high-SNR conditional maximum-likelihood estimator full
statistical characterization,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 12, pp. 4840–4843, Dec. 2006.

2783


