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ABSTRACT

The Angular Resolution Limit (ARL) on resolving two closely
spaced polarized sources using vector-sensor arrays is considered
in this paper. The proposed method is based on the information
theory. In particular, the Stein’s lemma provides, asymptotically,
a link between the probability of false alarm and the relative en-
tropy between two hypothesis of a given statistical binary test. We
show that the relative entropy can be approximated by a quadratic
function in the ARL. This property allows us to derive and analyze
a closed-form expression of the ARL. To illustrate the interest of
our approach, the ARL, in the sense of the detection theory, is also
derived. Finally, we show that the ARL is only sensitive to the norm
of the polarization state vector and not to the particular values of the
polarization parameters.

Index Terms— Angular resolution limit, polarized source lo-
calization, distance measure, information theory, detection theory.

1. INTRODUCTION

The Direction-Of-Arrivals (DOA) estimation for polarized sources
based on the vector-sensor arrays have been largely investigated in
the last decade. In [1], the authors considered the problem of source
localization in a multipath environment by using a vector-sensor ar-
ray consisting of three electric and three magnetic dipoles. In [2],
a tensorial version of the MUSIC algorithm for vector-sensor arrays
was presented. On the other hand, the polarized seismic wave esti-
mation was considered in [3]. Whereas, in [4], closed form expres-
sions of Cramér-Rao Bound (CRB) have been derived.

In array processing, the Angular Resolution Limit (ARL) char-
acterizes the minimum angular separation to resolve two closely
spaced sources. In the literature, there are three approaches to ob-
tain the ARL. (1) The first approach based on the estimation accu-
racy. In this way, Smith [5] proposed the following criterion based
on the CRB: two signals are resolvable if the separation between
the two DOAs θ1 and θ2 is less than the standard deviation of the
separation estimation. Consequently, the ARL in the Smith sense is
defined as the angular separation between the parameters of inter-
est that is equal to the standard deviation of the angular separation.
Furthermore, in [6], the extension of the ARL in the case of multi-
ple parameters per signal based on Smith criteria was presented. (2)
The second approach based on the concept of the mean null spec-
trum [7]. This approach is quite intuitive but is only relevant to a
specific high-resolution algorithm. (3) The third approach based on
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detection theory. In [8], the ARL based on the Minimum Probabil-
ity of Error (MPE) for the deterministic signals is investigated. The
authors used the first order Taylor expansion of the MPE to derive
the ARL. Whereas, in [9] Liu and Nehorai have defined the statisti-
cal angular resolution limit using the asymptotic equivalence of the
Generalized Likelihood Ratio Test (GLRT). On the other hand, Shar-
man and Milanfard [10] derived the frequency resolution limit in the
spectral analysis using the GLRT.

In this paper, we consider the approach of the ARL based on the
information theory, and more specifically on the Stein’s lemma [11].
The Stein’s lemma links the false alarm probability (Pfa) resulted
from the Neyman-Pearson decision criterion to the relative entropy
(also called Kullback-Leiber pseudo-distance). As the relative en-
tropy can be approximated by a quadratic function in the ARL, it
is possible to determine the ARL by this way. To illustrate our ap-
proach, the ARL is derived in the Neyman-Pearson sense in the con-
text of the detection theory. Finally, we also compare our approach
to the one presented by Amar and Weiss in reference [8].

2. MODEL SETUP

2.1. Polarized signal model

We consider the context of DOA estimation of two narrow-band po-
larized source signals using a linear two elements vector-sensor ar-
ray. Without loss of generality, we assume that the array lays on the
Ox axis of the Cartesian coordinate. The array consists ofN vector-
sensors and the known positions of these vector-sensors in the array
are given by the vector d = [d1 . . . dN ]T . The two sources are as-
sumed to be located in the far-field, deterministic, and coplanar with
the array, i.e., the elevation angles of the sources equal θk = π/2,
k = {1, 2}2. For mathematical convenience, we consider the esti-
mation of uk = 2π

λ
sinφk, where φk denotes the azimuth angles of

the kth source, and where λ denotes the wavelength.
We assume that the source polarization is constant in time and

along the array. The polarization of the sources is characterized by
the vector [2]

p(ρ, ϕ) =

[
[p(ρ, ϕ)]1
[p(ρ, ϕ)]2

]
=

1√
ρ2 + 1

[
1
ρejϕ

]
, (1)

where ρ and ϕ denote the amplitude ratio and the phase shift be-
tween the second component of the sensor and the first [2]. At the
tth snapshot, the output signal in the time domain at the ith vector-
sensor consists of two components (the model in frequency domain
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is available in [2])

ẑi(t) =

2∑
k=1

[p(ρ, ϕ)]1 [a(uk)]isk(t) + n̂i(t) (2)

z̆i(t) =

2∑
k=1

[p(ρ, ϕ)]2 [a(uk)]isk(t) + n̆i(t) (3)

where a(uk) =
[
e−jd1uk . . . e−jdNuk

]T
, and where n̆(t),

n̂(t) denote the additive noises at the tth snapshot, and sk(t) de-
notes the source signal of the kth source at the tth observation.
We assume that s1(t) 6= s2(t), ∀t. The noises are assumed to be
complex, circular, white Gaussian with zero mean and covariance
matrix σ2I, i.e., n ∼ CN (0, σ2I). Furthermore, we assumed the
signal sequences of the two sources are deterministic with known
sequences at the observer. Consequently, at the tth snapshot, the
response vector z(t) = [ẑ1(t) . . . ẑN (t) z̆1(t) . . . z̆N (t)]T of the
array is given by

z(t) =

2∑
k=1

b(uk)sk(t) + n(t) (4)

where n(t) denotes the noise vector and b(uk) = p(ρ, ϕ)⊗ a(uk)
in which ⊗ stands for the Kronecker product.

2.2. MPE based binary hypothesis test

We can now adopt the two detection hypotheses (see [8]): under
hypothesis H0, the observer detects only a single signal, which is a
combination of the two sources, and under H1, the observer detects
two signals: H0 : z(t) = b(û(t))ŝ(t) + n(t),

H1 : z(t) =
2∑
k=1

b(uk)sk(t) + n(t)
(5)

where û(t) and ŝ(t) denote the parameter and signal amplitude
under H0, whereas the probability of error Pe given by Pe =
p(H0)Pfa + p(H1)Pm, in which Pfa and Pm denote the probabil-
ity of false alarm and the probability of miss, respectively, and where
p(H0), p(H1) denote the prior probability of the two hypotheses.
Without loss of generality, we assume that p(H0) = p(H1) = 1/2.
Thus, setting uc = u1+u2

2
and the ARL given by δ = u2 − u1,

then, the values of û(t), and ŝ(t) chosen according to the minimal
probability of error (MPE) criteria are given by [8]:

û(t) = uc + γ(t)δ, (6)

ŝ(t) =
1

2N
bH(û(t))

(
b(uc −

δ

2
)s1(t) + b(uc +

δ

2
)s2(t)

)
,(7)

where γ(t) = |s2(t)|2−|s1(t)|2

2(|s2(t)|2+|s1(t)|2+2<{s∗1(t)s2(t)}) . From the afore-

mentioned assumption, it is clear that

H0 : z(t) ∼ CN (µ0(t), σ2I), where µ0(t) = b(û(t))ŝ(t),

H1 : z(t) ∼ CN (µ1(t), σ2I) where µ1(t) =
2∑
k=1

b(uk)sk(t).

(8)

2.3. First-order Taylor expansions

Assume that the polarization parameters are all equal1, i.e. ρ1 =
ρ2 = ρ0 and ϕ1 = ϕ2 = ϕ0. The first-order Taylor expansions of
the vectors of interests are considered as follows:

b(u1) = b(uc)−
δ

2
ḃ(uc) at (u1 = uc − δ

2
, ρ0, ϕ0),

b(u2) = b(uc) +
δ

2
ḃ(uc) at (u2 = uc + δ

2
, ρ0, ϕ0),

b(û(t)) = b(uc) + γ(t)δḃ(uc) at (u′(t) = uc + γ(t)δ, ρ0, ϕ0)

in which the first-order derivative w.r.t. uc of vector b(uc) =

p(ρ0, ϕ0)⊗ a(uc) is defined as ḃ(uc) = p(ρ0, ϕ0)⊗ ȧ(uc) where
ȧ(uc) = jdiag{d}a(uc). So, the optimal value (7) becomes

ŝ(t) ∼= p(t) +
δ

2N
κcm(t) (9)

in which p(t) = s1(t) + s2(t), κc = bH(uc)ḃ(uc), m =
[m(1) . . .m(T )]T = VT s where s = [s1(1) s2(1) . . . s1(T ) s2(T )]T

and V = Bdiag{v(1), . . . ,v(T )} with v(t) = [γ(t) + 1
2
γ(t) −

1
2
]T . According to the previous expression, we can see that the

optimal source ŝ(t) is approximated by a linear combination of the
sources s1(t) and s2(t). Consequently, using the above expression
the first-order Taylor expansion of the mean under H0 and H1 can
be rewritten as

µ0(t) = b(û(t))ŝ(t) ∼= δν0(t), (10)

µ1(t) =

2∑
k=1

b(uk)sk(t) ∼= δν1(t). (11)

where

ν0(t) = p(t)γ(t)ḃ(uc) +

(
κcm(t)

2N

)
b(uc) (12)

ν1(t) =
q(t)

2
ḃ(uc). (13)

in which q(t) = s2(t) − s1(t). So, the linearized hypothesis test is
given by {

H0 : z ∼= δν0 + n,

H1 : z ∼= δν1 + n
(14)

where z = [z(1)T . . . z(T )T ]T , n = [n(1)T . . .n(T )T ]T , ν0 =[
νT0 (1) . . .νT0 (T )

]T
and ν1 =

[
νT1 (1) . . .νT1 (T )

]T
.

3. ARL BASED ON INFORMATION THEORY

3.1. Stein’s lemma

By maximizing the probability of detection (i.e. Pd ≈ 1) for Pfa ≤
ε with ε goes to zero slowly, the best error exponent resulting from
using Neyman-Pearson test is given by the Stein’s lemma [11,12] as
follows:

lim
T→∞

lnPfa = −D(p(z|H1)‖p(z|H0)), (15)

1Note that this situation is the worst case in the resolution point of view.
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where D(p(z|H1)‖p(y|H0)) denotes the relative entropy. Let Ω
be the observation space. After some trivial calculations, the rela-
tive entropy between two Gaussian distributions with parameterized
means is straightforwardly given by:

D(p(z|H1)‖p(z|H0)) =

∫
Ω

p(z|H1) ln

(
p(z|H1)

p(z|H0)

)
dz

=
1

σ2

T∑
t=1

‖µ0(t)− µ1(t)‖2 .

3.2. Geometrical expression of the relative entropy

Using relations (10) and (11), we can link the relative entropy and
the ARL according to

D(p(y|H1)‖p(y|H0)) ∼=
δ2

σ2

T∑
t=1

‖ν0(t)− ν1(t)‖2

=
δ2||m||2

σ2

∥∥∥κc
N

b(uc)− ḃ(uc)
∥∥∥2

=
δ2||m||2||d||2

σ2
cos2(Θ)

using ||p(ρ, ϕ)||2 = 1, ||a(uc)||2 = N , ||ȧ(uc)||2 = ||d||2 and
Θ is the largest canonical angle between vectors a(uc) and ȧ(uc).
The important point is that the relative entropy can be approximated
by a quadratic (in δ) expression. In addition, the relative entropy is
a function of the source waveforms, of the array distribution, of the
noise variance and of the a useful geometrical quantity which is the
”angle” between the steering vector and its first-order derivative. It
is interesting to note that the minimal value of 1/ cos2(Θ) which is
reached for collinear vectors (i.e. Θ = 0) is not relevant since by
construction the steering vector and its first-order derivative cannot
be collinear. Another geometrical interpretation is: the more orthog-
onal the two vectors, the smaller the relative entropy. This means
that it could be more and more difficult to discriminate the two hy-
pothesis. According to the expression of the relative entropy, we
can see that to ensure a ”good” discrimination of the two hypothesis,
we must have a large ARL or/and a large array distribution and/or a
small noise variance.

3.3. ARL based on the Stein’s lemma

Thus, from the above expressions and using the fact that for optimal
Pd (close to one), Pfa ≈ 2Pe = 2(1− η), the ARL takes a closed-
form expression according to

δ ∼=
−σ
√

log(2) + log(1− η)

µ ||d|| cos(Θ)
(16)

where η > 1/2, µ =
√
sHVVT s in which

VVT = Bdiag{G(1) . . .G(T )}

where

G(t) =

[(
γ(t) + 1

2

)2
γ2(t) + 1

4

γ2(t) + 1
4

(
γ(t)− 1

2

)2
]
. (17)

It is interesting to note that the ARL is affected by the waveform
design, (cf. quantity µ) but not from the polarization state in case of
unit norm of the polarization vector.

4. DETECTION THEORY APPROACH

In this Section, we derive the ARL using the detection theory ap-
proach, particularly, using the well-known Neyman-Pearson (NP)
criterion. The NP will minimize the probability of error Pe. Even if
the proposed approach concerns the minimization of Pe as the one
presented by Amar and Weiss [8], our approach is different. Indeed,
Amar and Weiss derive the ARL, denoted Theoretical Resolution
Limit (TRL), based on the linearization of the error probability. In
our method, we choose to linearize directly the observation signal as
done by Sharman and Milanfard [10].

In order to simplify the calculation, we perform the following
change of variable formula:

z′ =
z

δ
− ν0. (18)

Consequently, plugging (18) into (14), one obtains{
H0 : z′ ∼= n′

H1 : z′ ∼= ζ + n′
(19)

where ζ = ν1 − ν0 and n′ ∼ CN (0, σ
2

δ2
I). Consequently, one has

GNP (z′) =
p(z′|H1)

p(z′|H0)

H1

≷
H0

τ ′ =
p(H0)

p(H1)
, (20)

denoting TNP (z′) = ln (GNP (z′)) and τ = ln (τ ′), the statistics
test can be given by

TNP (z′) = ln

(
p(z′|H1)

p(z′|H0)

)
=
δ2

σ2

(∥∥z′ − ζ
∥∥2 −

∥∥z′∥∥2
)

=
δ2

σ2

(
‖ζ‖2 − 2<

{
aHz′

})H1

≷
H0

τ . (21)

Since we have assumed that p(H0) = p(H1) = 1/2, one obtains{
H0 : TNP (z′) > 0

H1 : TNP (z′) < 0.
(22)

Let L(z′) = <
{
ζHz′

}
, one can easily obtain{

H0 : L(z′) ∼ N (0, %2)

H1 : L(z′) ∼ N (‖ζ‖2 , %2)
(23)

where

%2 =
σ2 ‖ζ‖2

2δ2 .

Thus [13],

Pe =
1

2

((
1−Q

(
−‖ζ‖2

2
√
%2

))
+Q

(
‖ζ‖2

2
√
%2

))
, (24)

in which Q(.) denotes the right-tail function of the probability func-
tion for a Gaussian random variable with zero mean and unit vari-

ance. Since Q
(
−‖ζ‖2

2
√
%2

)
= 1−Q

(
‖ζ‖2

2
√
%2

)
, thus, one obtains

Pe = Q

(
‖ζ‖2√

4%2

)
(25)
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Consequently, the ARL based on the NP criteria is given by

δ ∼=
σ
√

2Q−1(1− η)

‖m‖ ‖d‖ cos(Θ)
(26)

where Q−1(.) is the inverse of the right-tail function of the proba-
bility function for a Gaussian random variable with zero mean and
unit variance.

5. SIMULATIONS RESULTS

Fig. 1. ARL vs. SNR. The considered ARL are based on the Infor-
mation Theory, on the Neyman-Pearson (NP), and on reference [8]
denoted by TRL for Theoretical Resolution Limit.

In this section, we will compare the ARL based on the Infor-
mation Theory, on the Neyman-Pearson (NP), and on reference [8]
denoted by TRL for Theoretical Resolution Limit. We consider an
uniform linear array consisting of N = 10 vector-sensor compo-
nents with a half-wavelength equidistantly space. The polarization
parameters were chosen as ρ0 = 1 and ϕ0 = π/3. The suc-
cess rate is η = 0.99 thus Pe is set to be 0.01, and the prob-
ability of false alarm equals Pfa = 0.02. We consider a large
number of observations T = 100. Since all parameters are herein
assumed to be deterministic, the expectation concerning the TRL
in [8], will not be performed. The signal to noise ratio SNR is given

by SNR =

(
2∑
k=1

‖sk‖2
)
/
(
2Tσ2

)
. Fig. 1 shows the behavior of

the ARL versus the SNR. One observes that the ARL based on the
three methods are very close. It is interesting to note that the ARL is
affected by the waveform design but not from the polarization state
in case of unit norm of the polarization vector.

6. CONCLUSION

We have introduced, in this paper, a new approach based on the in-
formation theory to obtain the ARL for two closely-spaced polar-
ized sources using a vector-sensor array. The key point is the fact
that the relative entropy, in the Stein’s lemma, can be approximated

by a quadratic function in the ARL. So, it is possible to derive the
ARL following this methodology. In addition, a geometrical expres-
sion of the ARL is provided. Finally, we compare our approach to
the Neyman-Pearson test (also derived in this paper) and to the The-
oretical Resolution limit (TRL) proposed by Amar and Weiss. In
particular, we show that for all these methods, the ARL is a function
of the (unit) norm of the polarization vector but not of the specific
values of the polarization parameters (under the assumption that the
polarizations parameters are all equal).
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