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ABSTRACT
In the context of polarized sources localization using a cocentered
orthogonal loop and dipole array, direction-of-arrival estimation per-
formance in terms of mean square error are investigated. In order to
evaluate these performance for both asymptotic and non-asymptotic
scenarios (low number of snapshot and/or low signal to noise ratio)
we derive closed-form expressions of the Weiss-Weinstein bound.
The analysis is performed under both conditional and unconditional
source signal models. We show the good ability of the proposed
bound to predict the well known threshold effect. We also show the
influence of the polarization parameters.

Index Terms— DOA and polarization estimation, Weiss-
Weinstein bound, COLD array

1. INTRODUCTION

In array processing, the use of an antenna able to handle the source
polarization is of importance for a large class of application (see [1]
and references therein). One of such antenna is the so-called COLD
(cocentered orthogonal loop and dipole) array. Several papers re-
lated to the COLD array can be cited: in [1], the authors have intro-
duced an efficient Direction-Of-Arrival (DOA) and polarization es-
timation technique and the COLD array was shown to improve both
the DOA and the polarization estimation performance compared to
the cocentered crossed-dipole array. Another example concerning
asymptotic performance is given in [2] where the statistical resolu-
tion limit, under the conditional observation model (i.e. when the
source signals are assumed to be deterministic) was investigated.
The authors have introduced an approach based on the Cramér-Rao
bound (CRB), and again, under some conditions, the COLD array
was shown to provide better performance than a conventional array.

In this paper, we are interested by the ultimate performance of
such an array in non-asymptotic scenarios, i.e., when the Signal to
Noise Ratio (SNR) and/or the number of snapshots are low. Indeed,
it is well known that such an array processing problem is a non-
linear estimation problem for which a threshold phenomenon (i.e.,
when a drastic increase of the DOA estimator mean square error)
appears [3]. Unfortunately, the CRB can not capture this threshold
effect [4]. Therefore, we are herein interested to investigate a more
relevant bound for the COLD array observation model: the so-called
Weiss-Weinstein bound (WWB) [5]. Indeed, the WWB is known as
one of the tightest bounds in the Weiss-Weinstein family [3], since
the WWB is a Bayesian bound, it takes into account the support of
the parameter via the prior distribution of the parameters. Conse-
quently, the WWB provides a powerful tool to predict the global
MSE behavior in both asymptotic and non-asymptotic regions.
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Due to its complexity (in comparison with the CRB), there are
few publications related to the WWB in the literature. Some of pre-
vious works, such as [6], have evaluated the WWB only by way
of simulations (i.e., without closed-form expressions). The bound
has been compared to the MSE of the MUSIC algorithm and clas-
sical Beamforming using an 8 × 8 element array antenna. In [7],
the authors have introduced a numerical comparison between the
Bayesian CRB, the Ziv-Zakai bound and the WWB for DOA estima-
tion. In [8], numerical simulations of the WWB to optimize sensor
positions for non-uniform linear arrays have been presented. In [9],
by considering the matched-field estimation problem, the authors
have derived a semi closed-form expression of the WWB in the so-
called unconditional observation model (i.e. when the source signals
are assumed to be Gaussian). Concerning the aforementioned con-
text of the conditional observation model a closed-form expression
of the WWB is given in the simple case of spectral analysis in [10].
Recently, the closed-form expressions of the WWB for DOA esti-
mation with a classical planar array were derived in [11], and were
applied for the array geometry design. Note that all these works have
been performed in the context where arrays are not able to handle the
polarization of the source signals.

In this paper, we consider the WWB performance bound on the
DOA and the SNR threshold analysis of a polarized source with a
COLD array. The closed-form expressions of the WWB are given
under both conditional and unconditional observation models for
which we present simulation results.

2. MODEL SETUP

We consider the context of DOA estimation of a single polar-
ized source using a linear (possibly non-uniform) array of N
COLD sensors. The source signal is assumed to be narrow-band
and to be located in the far-field area. The sensor positions
with respect to a reference axis are characterized by the vector
d = [d1 . . . dN ]. As in [1, 12] we assume that the source is
coplanar with the array. Therefore, the DOA of the source sig-
nal depends only on the azimuth angle, denoted φ. We assume that
the source polarization is known or previously estimated. Let us
set u =

[
j2πAsl
λ

cos ρ − Lsd sin ρe(jψ)
]T
, the polarization

vector, with polarization angles ρ ∈ [0, π/2] and ψ ∈ [−π, π].
λ denotes the wavelength, and Asl, Lsd denote the dipole lengths
and the loop perimeters, respectively, with the assumption that
Asl < 3λ/10, and Lsd < λ/10. The output at the ith sensor and
for the tth snapshot is a two components vector given by [4]:

[
ŷi(t)
y̆i(t)

]
= [a(φ)]is(t)u + ni(t), t = 1, . . . , T, (1)
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where s(t) denotes the source signal, where [a(φ)]i = e(j
2π
λ
di sinφ)

denotes the ith element of the steering vector a(φ) and where ni(t)
is an additive noise. This noise is assumed to be complex, circu-
lar, uncorrelated (spatially, temporally and between the loop and the
dipole of each sensors) Gaussian with zero mean and the variance
σ2. We will use the two classical alternative hypothesis about the
source signal

• H1: the source signal is assumed to be deterministic and
known. This is the so-called conditional signal model [13].

• H2: the source signal is assumed to be a complex circular
random Gaussian vector, independent of the noise, with zero
mean and known covariance matrix σ2

sI. This is the so-called
unconditional signal model [13].

For mathematical convenience, we consider the estimation of
ω = sinφ, and we assume that ω follows a uniform distribution
ω ∼ U [−1, 1], i.e.

p(ω) =

[
1
2

if − 1 ≤ ω ≤ 1,
0 otherwise. (2)

The output signal for the tth snapshot of the whole array can be
then expressed as:

y(t) =

[
ŷ(t)
y̆(t)

]
= b(ω)s(t) + n(t), (3)

where b(ω) = u ⊗ a(ω), with ⊗ denotes the Kronecker product,
where ŷ(t) = [ŷ1(t) . . . ŷN (t)]T , and where y̆(t) = [y̆1(t) . . . y̆N (t)]T .

With the aforementioned assumptions, under H1, the full ob-
servation vector (∀t) follows a Gaussian distribution with parame-
terized mean, i.e., y|ω ∼ CN (IT ⊗ b(ω)s, σ2I2NT ), with s =
[s(1) . . . s(T )]T . And, under H2, y(t) follows a Gaussian distribu-
tion with parameterized covariance matrix, i.e., y|ω ∼ CN (0, IT ⊗
R(ω)), where R(ω) = σ2

sb(ω)b(ω)H + σ2I2N Consequently, the
likelihood function underH1 can be expressed as:

p(y|ω) =
1

(πσ2)2NT
exp

(
− 1

σ2

T∑
t=1

‖y(t)− b(ω)s(t)‖2
)
, (4)

and the likelihood function underH2 is given by

p(y|ω) =
1

π2NT |R(ω)|T
exp

(
−

T∑
t=1

y(t)HR(ω)−1y(t)

)
, (5)

where |.| denotes the matrix determinant and ‖.‖2 denotes the norm
operator. The Weiss-Weinstein bound will be derived under both
modelsH1 andH2.

3. WEISS-WEINSTEIN BOUNDS FOR THE COLD ARRAY

The Weiss-Weinstein bound is a lower bound on the mean square er-
ror well known to accurately predict the SNR threshold effect which
appears in non-linear estimation problems [5]. The WWB is gen-
erally obtained by taking the supremum of a function over a set of
test points and over a set of parameters s ∈ [0, 1]. Concerning the
parameter s, one often set s = 1/2 , see [9–11], although there is no
proof that s = 1/2 could leads to the tightest WWB. The WWB for
s = 1/2 is given by:

WWB = sup
h

h2η(h, 0)η(0, h)

2(η(h, h)− η(h,−h))
(6)

where h is the difference between the parameter of interest and a
test-point and where the function η is defined as

η(α, β) =
∫
Θ

∫
Ω

√
p(y, ω + α)p(y, ω + β)dydω

=
∫
Θ

√
p(ω + α)p(ω + β)ζ(α, β)dω,

(7)

by denoting ζ(α, β) =
∫
Ω

√
p(y|ω + α)p(y|ω + β)dy. Ω and

Θ are the observation space and the parameter space, respectively.
p(y, .) and p(.) denote the joint distribution of the full observation
vector and the parameter (possibly a test point) and the a priori dis-
tribution of the parameter (possibly a test point). Note that one has
to respect ω + h ∈ Θ.

3.1. Conditional observation model

From (4), the expression of ζ(α, β) is given by:

ζ(α, β) =

∫
Ω

1

(πσ2)2NT

×e

(
− 1

2σ2

T∑
t=1

(‖y(t)−b(ω+α)s(t)‖2+‖y(t)−b(ω+β)s(t)‖2)
)
dy. (8)

By substituting x(t) = y(t)− 1
2

(b(ω + α)s(t) + b(ω + β)s(t)),
it easily leads to

− 1
2σ2

T∑
t=1

(
‖y(t)− b(ω + α)s(t)‖2 + ‖y(t)− b(ω + β)s(t)‖2

)
= − 1

σ2

T∑
t=1

(
‖x(t)‖2 + 1

4
‖b(ω + α)− b(ω + β)‖2

)
(9)

Since∫
Ω

1

(πσ2)2NT
exp

(
T∑
t=1

− 1

σ2
‖x(t)‖2

)
dx = 1, (10)

one obtains

ζ(α, β) = exp

(
−‖s‖

2

4σ2
‖b(ω + α)− b(ω + β)‖2

)
. (11)

Since b(ω) = u ⊗ a(ω), and since uHu =
4π2A2

sl
λ2 cos2 ρ +

L2
sd sin2 ρ, the closed-form expression of ‖b(ω + α)− b(ω + β)‖2

is obtained by noting that

‖b(ω + α)‖2 = ‖b(ω + β)‖2

= N
(

4π2A2
sl

λ2 cos2 ρ+ L2
sd sin2 ρ

)
,

(12)

b(ω + α)Hb(ω + β) =
(

4π2A2
sl

λ2 cos2 ρ+ L2
sd sin2 ρ

)
×

N∑
i=1

e(j
2π
λ
dk(β−α)),

(13)
and that

b(ω + β)Hb(ω + α) =
(

4π2A2
sl

λ2 cos2 ρ+ L2
sd sin2 ρ

)
×

N∑
i=1

e(j
2π
λ
dk(α−β)).

(14)
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One observes that the functions ζ(α, β) are no longer depending
on the parameter ω, consequently, η(α, β) can be rewritten as:

η(α, β) = ζ(α, β)

∫
Θ

√
p(ω + α)p(ω + β)dω. (15)

Under the uniform distribution prior assumption, one obtains:∫
Θ

√
p(ω + α)p(ω + β) = 1− |α|+ |β|

2
. (16)

From (6), (12), (13), (14), (15) and (16), one obtains the closed-
expression of WWB as (17) (shown on the top of next page). Note
that the bound is independent of the parameter ψ.

3.2. Unconditional observation model

From (5), the expression of ζ(α, β) can be expressed as:

ζ(α, β) =

∫
Ω

1

π2NT |R(ω + α)|T/2 |R(ω + β)|T/2

×e

(
−
T∑
t=1

y(t)H
(

R(ω+α)−1+R(ω+β)−1

2

)
y(t)

)
dy (18)

By setting Γ−1 = R(ω+α)−1+R(ω+β)−1

2
, one obtains, |Γ| =

22N

|R(ω+α)−1+R(ω+β)−1| , which leads to

ζ(α, β) = |Γ|T

|R(ω+α)|T/2|R(ω+β)|T/2

×
∫
Ω

1
π2NT |Γ|T exp

(
−

T∑
t=1

y(t)HΓ−1y(t)

)
dy.

(19)

Since
∫
Ω

1
π2NT |Γ|T exp

(
−

T∑
t=1

y(t)HΓ−1y(t)

)
dy = 1, one ob-

tains

ζ(α, β) =
|Γ|T

|R(ω + α)|T/2 |R(ω + β)|T/2
. (20)

Due to the special structure of R(ω+δ) = σ2
sb(ω+δ)b(ω+δ)H+

σ2I2N , one easily gets

|R(ω + δ)| = σ4N

(
1 +

σ2
s

σ2
‖b(ω + δ)‖2

)
. (21)

Furthermore, thanks to Woodbury identity, one gets

R(ω + δ)−1 =
1

σ2

(
I2N −

σ2
sb(ω + δ)b(ω + δ)H

σ2
s ‖b(ω + δ)‖2 + σ2

)
, (22)

thus

R(ω + α)−1 + R(ω + β)−1 =
1
σ2

(
2I2N − σ2

sb(ω+α)b(ω+α)H

σ2
s‖b(ω+α)‖2+σ2 −

σ2
sb(ω+β)b(ω+β)H

σ2
s‖b(ω+β)‖2+σ2

)
.

(23)

The matrix determinant of R(ω + α)−1 + R(ω + β)−1 equals
to the product of their eigenvalues. Particularly, there are 2N − 2
eigenvalues equal to 2/σ2, and the eigenvectors corresponding to
the two remaining eigenvalues is a linear combination of the form
b(ω + α) + qb(ω + β). Furthermore, the two above eigenvalues ν
are the solution of the following equation(

R(ω + α)−1 + R(ω + β)−1
)

(b(ω + α) + qb(ω + β))
= ν (b(ω + α) + qb(ω + β)) ,

(24)

Fig. 1. MAP versus WWB.

which reduces to

b(ω + α)
(

1
σ2

(
2−A ‖b(ω + α)‖2 − qAC

)
− ν
)

+b(ω + β)
(

1
σ2

(
2q −Bq ‖b(ω + β)‖2 −BCH

)
− qν

)
= 0,

(25)
where A =

σ2
s

σ2
s‖b(ω+α)‖2+σ2 , B =

σ2
s

σ2
s‖b(ω+β)‖2+σ2 and C =

b(ω+α)Hb(ω+ β). Since b(ω+α) and b(ω+ β) are nonlinear,
thus, their coefficients are equal to 0. Solving the first coefficient for
q and then substituting q into the second coefficient one obtains the
equation

ν2σ4 + νσ2 (2−A ‖b(ω + α)‖2 − 2 +B ‖b(ω + β)‖2
)

−4 + 2A ‖b(ω + α)‖2 + 2B ‖b(ω + β)‖2

−AB ‖b(ω + α)‖2 ‖b(ω + β)‖2 +ABCCH = 0. (26)

Solving (26) for ν, and since ‖b(ω + α)‖2 = ‖b(ω + β)‖2 =
‖b(ω)‖2, one obtains

∣∣R(ω + α)−1 + R(ω + β)−1
∣∣ =

2N∏
i=1

νi

= 22N

σ4N

(
σ2

‖b(ω)‖2σ2
s+σ2 + 1

4

σ4
s(‖b(ω)‖4−‖C‖2)
(‖b(ω)‖2σ2

s+σ2)2

)
.

(27)

Finally, substituting (21), (27) into (20), we have

ζ(α, β) =

(
1 +

σ2
s(‖b(ω)‖4 −

∥∥b(ω + α)Hb(ω + β)
∥∥2

)

4σ2(‖b(ω)‖2 σ2
s + σ2)

)−T
.

(28)
From (12), (13), and (14), one observes that, as for the conditional
case, ζ(α, β) does not depends on the parameter ω. Consequently,
the closed-form expression of the WWB is given by (29) (shown on
the top of next page). Note that the bound is independent of the
parameter ψ.

4. SIMULATION RESULT
In a first simulation, we compare the MSE behavior of the max-
imum a posteriori estimator (MAP) versus the WWB. We use an
uniform linear COLD array consisting of N = 10 sensors with the
intersensors spacing equal to λ/2 and T = 20 snapshots. The polar-
ization parameter are set to ρ = π/4, ψ = π/3, Asl = 2λ/10, and
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WWB = sup
h

h2
(

1− |h|
2

)2

exp

(
− ‖s‖

2

σ2

(
4π2A2

sl
λ2 cos2 ρ+ L2

sd sin2 ρ
)(

N −
N∑
k=1

cos
(

2π
λ
dkh

)))
2
(

1− |h|
2

)
− 2 (1− |h|) exp

(
− ‖s‖

2

2σ2

(
4π2A2

sl
λ2 cos2 ρ+ L2

sd sin2 ρ
)(

N −
N∑
k=1

cos
(

4π
λ
dkh

))) . (17)

WWB = sup
h

h2
(

1− |h|
2

)2

1 +
σ2
s

(
4π2A2

sl
λ2

cos2 ρ+L2
sd sin2 ρ

)2(
N2−

∥∥∥∥∥ N∑k=1
exp(j 2π

λ
dkh)

∥∥∥∥∥
2)

4σ2(N

(
4π2A2

sl
λ2

cos2 ρ+L2
sd

sin2 ρ

)
σ2
s+σ2)


−2T

2
(

1− |h|
2

)
− 2 (1− |h|)

1 +
σ2
s

(
4π2A2

sl
λ2

cos2 ρ+L2
sd

sin2 ρ

)2(
N2−

∥∥∥∥∥ N∑k=1
exp(j 4π

λ
dkh)

∥∥∥∥∥
2)

4σ2(N

(
4π2A2

sl
λ2

cos2 ρ+L2
sd

sin2 ρ

)
σ2
s+σ2)


−T . (29)

Fig. 2. WWB w.r.t the parameter ρ

Lsd = λ/10. The empirical MSE of the MAP is obtained over 1000
Monte Carlo trials. Fig. 1 shows that the WWB is a tight bound,
which well captures the SNR threshold of the MAP MSE (around 3
[dB]).

On the other hand, the impact of the polarization parameter, ρ,
is investigated. The scenario is the same as the previous simulation.
Fig. 2 shows the WWB versus the SNR, according to different value
of ρ under both assumptions. One observes that in each cases, both
the SNR threshold and asymptotic MSE are affected by ρ.

5. CONCLUSION

In this paper, we have derived closed-expressions of the WWB in the
context of source localization with a COLD array under both condi-
tional and unconditional observation models. The WWB is shown
to be a useful tool to capture the threshold effect. Furthermore, we
showed that the polarization parameter ρ has a strongly impact on
the MSE behavior.
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