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ABSTRACT

Fundamental limits in terms of mean square error for source
localization by an array of sensors are investigated. The con-
text is the case of a far-field source and a near-field source for
which few results are available. Particularly, in order to char-
acterize the SNR threshold exhibited by estimators in such
scenario, lower bounds other than the Cramér-Rao bound are
studied.

1. INTRODUCTION

Very few works are related to the study of the realistic situa-
tion where there exists coexisting far-field (FF) and near-field
(NF) sources such as speaker localization using microphone
arrays and guidance (homing) systems. At the contrary, we
can find a plethora of contributions on the localization of far-
field sources [1][2]. One can note the existence of some es-
timation algorithms adapted to the passive near field source
localization [3, 4, 5, 6, 7].

Nevertheless, there exist only few works studying the asymp-
totic estimation performance in this context [5, 8]. In the con-
text of the problem of source localization, one can see three
contributions: (1) propose new efficient algorithms/estimators
[9], (2) study the estimation performance independently of
a specific algorithm thanks to the lower bound on the mean
square error [10][11][12][13][14] and (3) derive and study
the theoretical resolution, i.e., the minimal angular distance
to resolve/discriminate two closely spaced emitted signals in
terms of their direction of arrivals [15][16]. Our contribution
belongs to the second point.

More precisely, to characterize the asymptotic performance
of an estimator in terms of the mean square error, the Cramér-
Rao bound [17], which is asymptotically achieved under cer-
tain mild/general conditions [18][19], is the most popular tool.
However, the Cramér-Rao bound becomes too optimistic in
the non-asymptotic region (i.e., when the outlier effect ap-
pears.) This non-asymptotic region is delimited by the so-
called threshold or breakdown point (i.e., when the estima-
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tor’s mean square error increases dramatically [20].) One
should note that the prediction of this threshold is of great
important since it delimits the optimal operating zone of the
estimators. We consider the two classical source signal model
assumptions [21]: the conditional model (i.e., when the sig-
nals are assumed to be deterministic) and the unconditional
model (i.e., when the signals are assumed to be driven by
a Gaussian random process). For each model, we propose
to characterize the threshold region using deterministic lower
bounds on the estimator’s mean square error. In particular, we
derive and analyze the Barankin bound [22][23][24] which is
known to be tighter than the Cramér-Rao bound and which
exhibit the threshold effect.

2. PROBLEM SETUP

One considers the scenario where several signal sources, de-
noted sFFk

(t) and sNFl
(t), with k = 1, . . . ,K and l =

1, . . . , L are received by an uniform linear array made from
J identical and omnidirectional sensors with inter-element
spacing denoted d. The source signals are assumed to be
narrow-bands and T snapshots are available. K sources are
located in the far-field area while the L others are located in
the near-field area. Consequently, we are interested by all the
direction of arrivals of each sources and by the ranges of the
sources located in the near-field area. Concerning the sources
located in the far-field area, the noise-free observations for

one snapshot is given by
K∑
k=1

a (ωFFk
) sFFk

(t) where a (ωFFk
)

is the steering vector (J × 1) with the jth element given by
{a (ωFFk

)}j = exp (iωFFk
j) for j = 0, . . . , J − 1. The

so-called electric parameters ωFFk
can be linked to the di-

rection of arrival, θFFk
, of the kth far-field source accord-

ing to ωFFk
= − 2πd

λ sin(θFFk
). Concerning the sources lo-

cated in the near-field area, the noise-free observations for

one snapshot is given by
L∑
l=1

b
(
ωNFl

, φNFl

)
sNFl

(t) where

b
(
ωNFl

, φNFl

)
is the steering vector (J × 1) with the jth

element given by{
b
(
ωNFl

, φNFl

)}
j

= exp
(
i
(
ωNFl

j + φNFl
j2
))



for j = 0, . . . , J − 1. Again, note that the so-called elec-
tric parameters ωl and φl can be linked to both the direc-
tion of arrival, θNFl

, and the range, rNFl
, of the near-field

source according to ωNFl
= − 2πd

λ sin(θNFl
) and φNFl

=
πd2

λrNFl
cos2(θNFl

). Note that, while the structure of a (ωFFk
)

is well known in array processing, the structure of the steering
vector b

(
ωNFl

, φNFl

)
is obtained by assuming, like most of

the algorithms in the literature, that the ranges lies on the Fres-
nel region, i.e., 0.62(d3(L − 1)3/λ)1/2 < rNFl

< 2d2(L −
1)2/λ ∀l. Finally, the observation model for our scenario is
the following

y (t) =

K∑
k=1

a (ωFFk
) sFFk

(t)

+

L∑
l=1

b
(
ωNFl

, φNFl

)
sNFl

(t) + n (t) , (1)

t = 1, . . . , T, where y (t) is the observed antenna signal
(J × 1) for one snapshot and where n (t) is the additive noise
(J × 1). Our assumptions are the following: (i) the signal
sources, sFFk

(t) and sNFl
(t), are assumed to be temporally

white complex Gaussian circular, jointly uncorrelated, with
zero mean and known variances σ2

FFk
and σ2

NFl
∀k and ∀l, (i-

bis) the signal sources, sFFk
(t) and sNFl

(t), are assumed to
be deterministic and known ∀t, ∀k and ∀l (ii) the noise, n (t) ,
is assumed temporally white complex circular Gaussian (un-
correlated with respect to the source signals) with zero mean
and (known) covariance matrix σ2IJ×J . The K + 2L pa-
rameters of interest are {ωFFk

}k=1,...,K , {ωNFl
}l=1,...,L and{

φNFl

}
l=1,...,L

. They are assumed to be deterministic.

3. BARANKIN BOUND

3.1. Background

In the non-Bayesian context (deterministic unknown parame-
ters) the Barankin bound is the greatest lower bound for any
globally unbiased estimator. In this paper, we will use the
so-called McAulay-Seidman bound [23] which is a useful ap-
proximation of the Barankin bound. Let θ̂ be an unbiased
estimator of a vector of interest θ of size P × 1, then one has
the following inequality about the estimation error covariance
matrix

E
[(

θ̂ − θ
)(

θ̂ − θ
)T]

� HΦ−1HT , (2)

where A � B means that the matrix A −B is non-negative
defined. In the right hand side of Eqn. (2), H is a P × Q
matrix containing the so-called Q test-points left to the user.
This matrix will be structured has follows:

H =
(

h1 h2 · · · hQ
)
. (3)

Generally, these test points are choosed uniformly dis-
tributed over the parameter space Θ such that θ + hq ∈ Θ,
∀q = 1, . . . , Q. Moreover higher is the number of test points,
tighter will be the bound to predict the threshold effect. On
the other hand, Φ is a Q × Q matrix that one has to inverse,
so if Q is high, the computation of the bound becomes com-
putationally expensive. The elements of Φ are given by

{Φ}m,n =

∫
Ω

p (Y;θ + hm) p (Y;θ + hn)

p (Y;θ)
dY − 1, (4)

where Y =
(

y (1) · · · y (T )
)
, p (Y; .) is the joint prob-

ability density function of the full set of observations and Ω
is the observation space.

3.2. Application to our problem

In the context of the aforementioned scenario, we have

θ =
(
ωFFk

· · ·ωFFk
ωNFl

· · ·ωNFl
φNFl

· · ·φNFl

)T
,

(and consequently, P = K + 2L).
First, under the assumption (i), i.e. that the signal sources,

sFFk
(t) and sNFl

(t), are assumed to be temporally white
complex Gaussian circular, jointly uncorrelated, with zero mean
and known variances σ2

FFk
and σ2

NFl
∀k and ∀l, and due to

the noise assumptions, it is clear that the joint probability den-
sity function of the full set of observations is the product of
the probability density functions of one observation vector
over t = 1, . . . , T and that the probability density function
of one observation vector (i.e. for one snapshot y (t)) is com-
plex Gaussian circular with zero mean and covariance matrix
Σy (θ) given by

Σy (θ) =

K∑
k=1

σ2
FFk

a (ωFFk
) aH (ωFFk

)

+

L∑
l=1

b
(
ωNFl

, φNFl

)
bH
(
ωNFl

, φNFl

)
+ σ2IJ×J . (5)

In other words,

{Φ}m,n =

T∏
t=1

∫
Ω

p (y (t) ;θ + hm) p (y (t) ;θ + hn)

p (y (t) ;θ)
dy (t)− 1, (6)

and

p (y (t) ;θ) =
1

πJ |Σy (θ)|
exp

(
−yH (t) Σ−1

y (θ) y (t)
)
,

(7)
where Σy (θ) is given by Eqn. (5). It is easy to see that∫

Ω

p (y (t) ;θ + hm) p (y (t) ;θ + hn)

p (y (t) ;θ)
dy (t) =

|Σy(θ)| |Σy(θ + hn|−1

πJ |Σy(θ + hm)|

∫
Ω

exp
(
−yH(t)Γ−1y(t)

)
dy (t) ,(8)



where Γ−1 = Σ−1
y (θ + hm) + Σ−1

y (θ + hn) − Σ−1
y (θ).

Then, since∫
Ω

exp
{
−yH(t)Γ−1y(t)

}
dy (t) = πJ |Γ| , (9)

one obtains the closed-form expression of {Φ}m,n which is
given by

{Φ}m,n =
|Σy(θ)|T |Σy(θ + hm)|−T |Σy(θ + hn)|−T∣∣Σ−1

y (θ + hm) + Σ−1
y (θ + hn)−Σ−1

y (θ)
∣∣T +1.

(10)
Consequently, by plugging Eqn. (5) into to Eqn. (10),

there are no more integrals to compute in order to obtain the
bound.

Second, under the assumption (i-bis), i.e. that the sig-
nal sources, sFFk

(t) and sNFl
(t), are assumed to be deter-

ministic and known ∀t, ∀k and ∀l, and due to the noise as-
sumptions, it is clear that the joint probability density func-
tion of the full set of observations is still the product of the
probability density functions of one observation vector over
t = 1, . . . , T and that the probability density function of one
observation vector (i.e. for one snapshot y (t)) is complex
Gaussian circular with mean η (t,θ) given by

η (t,θ) =
K∑
k=1

a (ωFFk
) sFFk

(t) +

L∑
l=1

b
(
ωNFl

, φNFl

)
sNFl

(t) , (11)

and covariance matrix σ2IJ×J . In other words, Eqn. (6) still
holds and

p (y (t) ;θ) =
1

(πσ2)
J

exp

(
− 1

σ2
‖y (t)− η (t,θ)‖2

)
.

(12)
After some easy calculus, one can see that

σ2 ln

∫
Ω

p (y (t) ;θ + hm) p (y (t) ;θ + hn)

p (y (t) ;θ)
dy (t) =

‖η (t,θ + hm)− η (t,θ)‖2

−‖η (t,θ + hm)− η (t,θ + hn)‖2

+ ‖η (t,θ + hn)− η (t,θ)‖2 . (13)

Consequently,

{Φ}m,n =

exp
1

σ2

T∑
t=1

 ‖η (t,θ + hm)− η (t,θ)‖2

−‖η (t,θ + hm)− η (t,θ + hn)‖2

+ ‖η (t,θ + hn)− η (t,θ)‖2

 . (14)

Again, there are no more integrals to compute in order to
obtain the bound.

Fig. 1. Lower bounds on the mean square error (deterministic
case) w.r.t. ω with 10 snapshots and (θ, r) = (45◦, 6λ).

Fig. 2. Lower bounds on the mean square error (deterministic
case) w.r.t. φ, with 10 snapshots and (θ, r) = (45◦, 6λ).

4. SIMULATION RESULTS

The scenario used in these simulations is a uniform linear ar-
ray of 5 sensors spaced by λ

2 .
To compare the threshold prediction accuracy we plot the

MSE w.r.t. ω and φ using 1000 Monte Carlo trials. Both de-
terministic and stochastic cases are considered. We compare
our bound [23] to several well known bounds in the literature
computed numerically (particularly [25] and [26]).

5. CONCLUSION

In this paper, one gives closed-form expressions of the Barankin
bound in the context of a scenario where there exists coexist-
ing far-field and near-field sources. Both the stochastic and
deterministic observations model cases are studied and we
compare the bound with several other of the literature.



Fig. 3. Lower bounds on the mean square error (the stochastic
case) w.r.t. ω with 100 snapshots and (θ, r) = (30◦, 6λ).

Fig. 4. Lower bounds on the mean square error (the stochastic
case) w.r.t. φ with T = 100 snapshots and (θ, r) = (30◦, 6λ).
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