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ABSTRACT
This article investigates hybrid lower bounds in order to
predict the estimators mean square error threshold effect.
A tractable and computationally efficient form is derived.
This form combines the Barankin and the Weiss-Weinstein
bounds. This bound is applied to a frequency estimation
problem for which a closed-form expression is provided. A
comparison with results on the hybrid Barankin bound shows
the superiority of this new bound to predict the mean square
error threshold.

Index Terms— Parameter estimation, hybrid bounds,
SNR threshold

1. INTRODUCTION

In estimation theory, the quality of an estimator is generally mea-
sured by its Mean-Squared Error (MSE). In order to quantify its
ultimate performance, the MSE is compared to the so-called lower
bounds which are independent of estimation technique. Among
these bounds, one of the most famous is the Cramér-Rao Bound
(CRB) [1][2] due to its easy computation. However, when the obser-
vation model is not linear with respect to the parameters to estimate,
it is well known that a Signal-to-Noise Ratio (SNR) threshold occurs
([3] p. 273) i.e. large estimation errors appear. Consequently, the
knowledge of this particular value for which this threshold appears
is fundamental. Unfortunately, the CRB cannot predict this SNR
threshold. This is why lower bounds tighter than the CRB have been
proposed in the literature. Among these bounds, we distinguish the
so-called deterministic lower bounds where the parameters to esti-
mate are assumed to be deterministic unknown e.g. [4][5][6][7][8]
and Bayesian lower bounds where the parameters to estimate are
assumed to be random with a known a priori Probability Density
Function (PDF) e.g. [9][10][11][12][13]. All these bounds have
already been successfully applied to various signal processing appli-
cations [14].

This work has been partly funded by the European Network of excel-
lence NEWCOM#

A third family of lower bounds on the MSE called hybrid lower
bounds are used to bound the MSE of any estimator which simulta-
neously estimates both deterministic parameters and random param-
eters from observations. Indeed, such parametric estimation prob-
lems often appear in the literature, for example, the Gaussian gener-
alized linear model [15]. Historically, the first hybrid bound called
Hybrid Cramér-Rao Bound (HCRB) has been introduced in 1987
by Rockah and Schultheiss in the context of array shape calibra-
tion [16]. Another proof of the HCRB can also be found in [17].
Then, [18] have proposed in 1997 the so-called Hybrid Barankin
Bound (HBB) or Reuven-Messer bound and have applied this bound
for time-delay estimation in radar signal. Note that, as the classi-
cal CRB and Bayesian CRB, the HCRB cannot predict the thresh-
old effect while the HBB does. Recently, [19] have proved three
theorems giving necessary and sufficient conditions on the asymp-
totic achievability of the HCRB. A slight extension of the HCRB
where the a priori PDF of the random parameters depends on deter-
ministic parameters has been proposed in [20] and applied to phase
estimation in binary phase-shift keying transmission in a non-data-
aided context. Finally, a new class of hybrid bound via compression
of the sampled centered likelihood-ratio function has been proposed
and applied in a frequency estimation context in [21]. Among these
aforementioned theoretical results, hybrid lower bounds have been
shown to be useful in many applications e.g. refractivity estima-
tion using clutter from sea surface [22], parameters estimation in
long-code DS/CDMA systems [23], bearing estimation for deformed
towed arrays in the fluid mechanics context [24].

In this paper, we propose a new hybrid lower bound which is
based on the Chapman-Robbins bound (a practical approximation
of the Barankin bound) for the deterministic parameter and on the
Weiss-Weinstein bound for the random parameter. Our motivation
comes from the fact that, among the Bayesian bounds, the Weiss-
Weinstein bound is known to be one of the tightest [25]. So, one
can expect that the combination of these bounds will lead to a bound
tighter than the HBB. The proof is based on the covariance matrix in-
equality [26]. Particularly, we detail the underlying assumptions on
the class of estimators for which the proposed bound can be applied.
Last, we give a closed-form expression in a signal processing appli-
cation with simulation results where a comparison with the Maxi-
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mum A Posteriori / Maximum Likelihood Estimator (MAPMLE) is
conducted.

2. RELATION TO PRIOR WORK

In the Bayesian context (random parameters only), the Weiss-
Weinstein Bound (WWB) is known to be tighter than the Bayesian
Barankin bound [12]. In the hybrid context (where the parameter
vector contains both deterministic and random parameters), the HBB
[18] has been known so far to be one of the tightest bounds. The
purpose of the present paper, by including the WWB, is precisely to
offer a new tighter hybrid bound to the signal processing community.

3. HYBRID LOWER BOUNDS

3.1. Background

Let us first remind the standard assumptions used in the context of
hybrid bounds [18]. Consider Ω an observation space of points X

and let θ =
[
θT
d θT

r

]T
denotes the hybrid parameter vector to es-

timate where θd ∈ Πd ⊆ RD is a vector of unknown determinis-
tic parameters and where θr ∈ Πr ⊆ RR is a vector of unknown
random parameters. The random parameters are characterized by
a prior PDF which is assumed to be independent of θd. In other
words f (θr;θd) = f (θr). Let f (X,θ) = f (X,θr;θd) denote
the joint PDF of X and θr parameterized by θd. If θ̂ is an estima-
tor of θ, then under some mild regularity assumptions, the following
covariance inequality holds (e.g. [17],[18] and [26] p. 124) for any
real-valued vector v (X,θ) with finite second order moment:

EX,θ

[(
θ̂ − θ

)(
θ̂ − θ

)T ]
≽ CV−1CT , (1)

where A ≽ B means that A−B is positive semidefinite matrix and
where

V = EX,θ

[
v (X,θ)vT (X,θ)

]
, (2)

and
C = EX,θ

[(
θ̂ − θ

)
vT (X,θ)

]
. (3)

Note that Eqn. (1) is not a lower bound independent of θ̂ in gen-
eral case, since C depends on θ̂. However some judicious choices
of v (X,θ) lead to classical lower bounds on the MSE. For ex-
ample, if one chooses v (X,θ) = ∂ ln(f(X,θ))

∂θ
, one obtains the

HCRB [16]. On the other hand, if one chooses {v (X,θ)}i ={
f(X,θ+hi)

f(X,θ)
− 1 if θ ∈ Θ

0 else
where Θ = {θ : f (X,θ) > 0,X ∈ Ω}

and where hi are the so called test-points, i = 1, · · · , N , one ob-
tains the HBB [18].

3.2. New hybrid lower bound based on the Barankin and Weiss-
Weinstein bounds

3.2.1. Notations and assumptions

For sake of simplicity, we restrict our analysis to the case of a sin-
gle deterministic parameter and a single random parameter. Con-
sequently, θ = (θd θr)

T . The multivariate case is cumbersome
but straightforward [27]. Regarding the test-points, let us define
h1 = (h1d h1r)

T and h2 = (0 h2r)
T . Note the fact that the first

entry of h2 is equal to 0 is a necessary condition to derive the bound
what will be justified in the sequel.

In addition, we have the following assumptions:

1) ∀θr ∈ Πr , f (X,θr; θd) = 0 ⇒ f (X,θr + hr; θd + hd) = 0.

2) ∀θr ∈ Πr ,
EX|θ;θd

[
θ̂d
]
= θd,

EX|θr ;θd+hd

[
θ̂d
]
= θd + hd.

3) ∀θd ∈ Πd,
EX,θr ;θd

[
θ̂r − θr

]
= 0,

EX,θr+hr ;θd

[
θ̂r − (θr + hr)

]
= 0.

Remark: assumption 1 means that the random parameter support can
not be a compact interval; for example the proposed bound does not
apply for an uniform prior (as the HBB).

3.2.2. The proposed bound

Let us set v (X,θ) = (vd (X,θ) vr (X,θ))T . We propose to use

vd (X,θ) =

{
f(X,θ+h1)

f(X,θ)
− 1 if θ ∈ Θ

0 else
, (4)

and

vr (X,θ) =

{
fm(X,θ+h2)

fm(X,θ)
− f1−m(X,θ−h2)

f1−m(X,θ)
if θ ∈ Θ

0 else
, (5)

where 0 < m < 1. Note that:

• vr (X,θ) →
m→1

f(X,θ+h2)

f(X,θ)
− 1, which is the choice of v (X,θ)

leading to a particular HBB with two test-points.

• If the problem is reduced to random parameter only i.e. θ = θr
and v (X,θ) = vr (X,θ) , then Eqn. (1) reduces to the Bayesian
Weiss-Weinstein Bound ([12] Eqn. (19)).

In this case, plugging Eqn. (4) and (5) in Eqn. (2) and (3) will lead
to the proposed hybrid lower bound on the MSE. Straightforwardly
the elements of matrix V are given by

{V}1,1 = µ (2,h1)− 1, (6)

{V}2,2 = µ (2m,h2) + µ (2− 2m,−h2)− 2µ (m, 2h2) , (7)
and

{V}1,2 = {V}2,1 = η (m,h1,h2)− η (1−m,h1,−h2)

−µ (m,h2) + µ (1−m,−h2) , (8)

where

µ (m,h) = EX,θ

[
fm (X,θ + h)

fm (X,θ)

]
, (9)

and

η (α,h1,h2) = EX,θ

[
f (X,θ + h1)

f (X,θ)

fα (X,θ + h2)

fα (X,θ)

]
. (10)

Concerning the elements of matrix C, one has to prove that they are
independent of θ̂ in order to obtain a lower bound independent of
the estimation scheme. After calculations detailed on Appendix, one
obtains

{C}1,1 = h1d, {C}2,1 = h1r, {C}1,2 = 0, (11)

and
{C}2,2 = h2rµ (m,h2) . (12)

Finally, the lower bound is given by

max
h1∈Πd×Πr,h2∈{0}×Πr,0<m<1

{
CV−1CT

}
. (13)
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4. APPLICATION AND SIMULATION

4.1. Example of application

We consider the frequency estimation problem given in [21], where
the observation model is:

x = sejφb (ω) + n, (14)

and x ∈ CP is the observation vector, b (ω) =
[
1 ejω · · · ej(P−1)ω

]T
is a normalized cisoid signal and the noise n is assumed to be com-
plex Gaussian circular centred with covariance matrix σ2

nI.
We assume that the phase φ ∈ ]−π;π] is known, the amplitude
s ∈ R+ is a deterministic unknown parameter and the frequency
ω is a random unknown parameter with a priori Gaussian centred
with variance σ2

ω . Therefore the unknown vector of parameters to
estimate is θ = [s ω]T .
The conditional density of probability of x|ω; s is

fx|ω;s (x|ω; s) =
e
− 1

σ2
n
∥x−sejφb(ω)∥2

(πσ2
n)

P
. (15)

We assume that ω is independent of s, so the joint law is given by:

fx,ω;s (x, ω; s) = fx|ω;s (x|ω; s) fω (ω)

=
e
− 1

σ2
n
∥x−sejφb(ω)∥2− ω2

2σ2
ω

(πσ2
n)

P √
2πσ2

ω

. (16)

To compute the new hybrid bound, we need to calculate the expres-
sion (9) and (10). Some cumbersome but not difficult calculus [27]
yields the following expressions for any h = [hs hω]

T and m:

µ (m,h) = e

m(m−1)

σ2
n

(
P−1∑
t=0

|(s+hs)e
jhωt−s|2

)
+

m(m−1)h2
ω

2σ2
ω (17)

and for any h1 = [h1s h1ω]
T and h2 = [0 h2ω]

T and α:

η (α,h1,h2) =
e

1
σ2
n


P−1∑
t=0

|(s+h1s)e
jh1ωt+αsejh2ωt−αs|2

+α
h2ωh1ω

σ2
ω

e
1

σ2
n

P (s+h1s)
2

(18)

4.2. Simulation

In the application example considered: s = 1, φ = π
4

, σ2
ω =

1
2

and P = 25. From [15], the HCRB is 2 × 2 diagonal

matrix with entries {HCRB}1,1 =
σ2
n

2P
and {HCRB}2,2 =(

2s2

σ2
n

(
P (P+1)(2P+1)

6
− P 2

)
+ 1

σ2
ω

)−1

. The HBB and the new

bound are computed with h1 ∈ [−1; 1]×{0} where the sampling in-
terval for the first component is δhs = 0.01 and h2 ∈ {0}×

[
− 3

2
; 3
2

]
where the sampling interval for the second component is δhω = 3

28
.

Last, the MAPMLE is obtained by searching the best candi-
date s ∈ [0; 2] and ω ∈

[
− 3

2
; 3
2

]
maximizing the joint PDF

fx,ω;s (x, ω; s).
The empirical MSE of the MAPMLE is assessed with 1000 Monte-
Carlo trials.
Since in our application case the observation model is linear in s and
non linear in ω, we only plot on the figure (1) the HCRB, the HBB,
the proposed bound denoted HBWWB, and the empirical MSE of
the MAPMLE for the random parameter ω which is the only one to
exhibit a SNR threshold phenomenon.
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Fig. 1. Comparison of MSE hybrid lower bounds versus SNR

5. CONCLUSION

In this paper, a hybrid lower bound on the mean square error based
on the Barankin bound and on the Weiss-Weinstein bound has been
developed. This bound can be applied to the same class of estimators
as the hybrid Barankin bound but exhibits a better SNR threshold
prediction.

6. APPENDIX

Concerning the element {C}1,1, we have

{C}1,1 = EX,θ

[(
θ̂d − θd

)
vd (X,θ)

]
=

∫
Πr

∫
Ω

(
θ̂d − θd

)(f (X,θ + h1)

f (X,θ)
− 1

)
f (X,θ) dXdθr

=

∫
Πr


f (θr + h1r)

∫
Ω

(
θ̂d − θd

)
×f (X| θr + h1r; θd + h1d) dX

−f (θr)
∫
Ω

(
θ̂d − θd

)
f (X| θr; θd) dX

 dθr. (19)

By using assumption 2, one obtains∫
Ω

(
θ̂d − θd

)
f (X| θr; θd) dX = 0, (20)

and∫
Ω

(
θ̂d − (θd + h1d)

)
f (X| θr + h1r; θd + h1d) dX = 0,

⇕∫
Ω

(
θ̂d − θd

)
f (X| θr + h1r; θd + h1d) dX = h1d. (21)
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Thus, plugging Eqn. (20) and (21) in Eqn. (19), we have

{C}1,1 = h1d

∫
Πr

f (θr + h1r) dθr = h1d. (22)

Regarding the element {C}2,1, we have

{C}2,1 = EX,θ

[(
θ̂r − θr

)
vd (X,θ)

]
=

∫
Πr

∫
Ω

(
θ̂r − θr

)(
f(X,θ+h1)

f(X,θ)
− 1
)
f (X,θ) dXdθr

=


∫
Πr

∫
Ω

(
θ̂r − θr

)
f (X,θ + h1) dXdθr

−
∫
Πr

∫
Ω

(
θ̂r − θr

)
f (X,θ) dXdθr


(23)

By using the assumption 3, one obtains∫
Πr

∫
Ω

(
θ̂r − θr

)
f (X,θ) dXdθr = 0 (24)

and∫
Πr

∫
Ω

(
θ̂r − (θr + h1r)

)
f (X,θ + h1) dXdθr = 0 (25)

⇕∫
Πr

∫
Ω

(
θ̂r − θr

)
f (X,θ + h1) dXdθr =

h1r

∫
Πr

∫
Ω

f (X| θr + h1r; θd + h1d) f (θr + h1r) dXdθr.

By substitution θ′r = θr + h1r and by assumption 1, the integer
space is still Πr , and

{C}2,1 = h1r

∫
Πr

∫
Ω

f
(
X| θ′r; θd + h1d

)
f
(
θ′r
)
dXdθ′r

= h1r. (26)

Before calculating {C}1,2 and {C}2,2, we give a preliminary result:
for any real-valued function g (X,θd) defined on Ω×Πd and for any
h = (0 hr)

T where hr ∈ Πr , one has∫
Πr

g (X,θd)
(

fm(X,θ+h)
fm(X,θ)

− f1−m(X,θ−h)

f1−m(X,θ)

)
f (X,θ) dθr

= g (X,θd)

∫
Πr

(
fm (X,θ + h) f1−m (X,θ)
−f1−m (X,θ − h) fm (X,θ)

)
dθr.

(27)
Note that∫

Πr

(
fm (X,θ + h) f1−m (X,θ)
−f1−m (X,θ − h) fm (X,θ)

)
dθr =

∫
Πr

fm (X,θr + hr; θd) f
1−m (X,θr; θd) dθr

−
∫

Πr

f1−m (X,θr − hr; θd) f
m (X,θr; θd) dθr

 (28)

Let us study the first integral. By substituting θ′r = θr + hr , the
integer space is still Πr by assumption 1 and then,∫
Πr

fm (X,θr + hr; θd) f
1−m (X,θr; θd) dθr

=

∫
Πr

fm (X,θ′r; θd
)
f1−m (X,θ′r − hr; θd

)
dθ′r, (29)

Thus, using (29) into (27), one obtains∫
Πr

g (X,θd)

(
fm (X,θ + h)

fm (X,θ)
− f1−m (X,θ − h)

f1−m (X,θ)

)
f (X,θ) dθr

= 0 a.e. X ∈ Ω and for every θd ∈ Πd (30)

Remarks:
• This result is an extension of Eqn. (1) in [12] when the joint PDF
depends on θd.
• If we chose h = (hd hr) with hd ̸= 0 in this premilinary result,
then Eqn. (30) would depend on X. Consequently, we would find
that {C}1,2 and {C}2,2 would depend on θ̂.

Now, concerning {C}1,2, one has

{C}1,2 = EX,θ

[(
θ̂d − θd

)
vr (X,θ)

]
=

∫
Ω

(
θ̂d − θd

) ∫
Πr

(
fm(X,θ+h2)

fm(X,θ)

− f1−m(X,θ−h2)

f1−m(X,θ)

)
f (X,θ) dθrdX

= 0,

using Eqn. (30) with g (X,θd) = θ̂d − θd.
Finally, concerning {C}2,2, one has

{C}2,2 = EX,θ

[(
θ̂r − θr

)
vr (X,θ)

]
=

∫
Ω

∫
Πr

(
θ̂r − θr

)( fm(X,θ+h2)

fm(X,θ)

− f1−m(X,θ−h2)

f1−m(X,θ)

)
f (X,θ) dθrdX

=

∫
Ω

∫
Πr

θr

(
f1−m(X,θ−h2)

f1−m(X,θ)

− fm(X,θ+h2)

fm(X,θ)

)
f (X,θ) dθrdX, (31)

by using Eqn. (30) with g (X,θd) = θ̂r . Let us study∫
Πr

θrf
1−m (X,θ − h2) f

m (X,θ) dθr =∫
Πr

θrf
1−m (X,θr − h2r; θd) f

1 (X,θr; θd) dθr. (32)

By substitution θ′r = θr − h2r , the integer space for θ′r is still Πr

by assumption 1 and we have∫
Πr

θrf
1−m (X,θ − h2) f

m (X,θ) dθr

=

∫
Πr

(
θ′r + h2r

)
f1−m (X,θ′r; θd

)
fm (X,θ′r + h2r; θd

)
dθ′r

=

∫
Πr

θ′rf
m (X,θ′r + h2r; θd

)
f1−m (X,θ′r; θd

)
dθ′r

+h2r

∫
Πr

fm (X,θ′r + h2r; θd
)
f1−m (X,θ′r; θd

)
dθ′r. (33)

Thus, plugging Eqn. (33) in (31), one has

{C}2,2 = h2rEX,θ

[
fm (X,θ + h2)

fm (X,θ)

]
. (34)
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