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ABSTRACT

We address the problem of effectiveness of the high resolu-

tion techniques applied to the conditional model. The ratio-

nale is based on a definition of the probability of resolution of

maximum likelihood estimators which is computable in the

asymptotic region of operation (in SNR and/or in large num-

ber of snapshots). The application case is the multiple tones

estimation problem (Doppler frequencies estimation in radar).

Index Terms— high resolution techniques, maximum

likelihood estimators, Cramer-Rao bound, multiple tones

1. INTRODUCTION

The resolvability of closely spaced signals, in terms of pa-

rameter of interest, for a given scenario (e.g., for a given

Signal-to-Noise Ratio (SNR), for a given number of snap-

shots and/or for a given number of sensors) is a former and

challenging problem which was recently updated by Smith

[1, ref.12], Shahram and Milanfar [1, ref.13], Liu and Neho-

rai [1, ref.14], Amar and Weiss [1, ref.15] and El Korso et al

[1]. Historically, the concept of Statistical Resolution Limit

(SRL) has been introduced as the minimum distance between

two closely spaced signals embedded in an additive noise that

allows a correct resolvability/parameter estimation. The SRL

is therefore an important statistical tool to quantify the ulti-

mate performance for parametric estimation problems. Lately

authors in [1] have generalized the concept of the SRL to the

Multidimensional SRL (MSRL) applied to the multidimen-

sional harmonic retrieval model. In that paper, they derive

the SRL for the so-called multidimensional harmonic retrieval

model by using a generalization of the previously introduced

SRL concepts called Multidimensional SRL (MSRL). They

first derive the MSRL using an hypothesis test approach (Liu
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and Nehorai). This statistical test is shown to be asymptoti-

cally an uniformly most powerful test which is the strongest

optimality statement that one could expect to obtain. Second,

they link the proposed asymptotic MSRL based on the hy-

pothesis test approach to a new extension of the SRL based

on the Cramér-Rao Bound approach (Smith). Thus, a closed-

form expression of the asymptotic MSRL is given and an-

alyzed in the framework of the multidimensional harmonic

retrieval model. In the present paper we propose a different

rationale to address the problem of resolvability of closely

spaced signals, in terms of parameter of interest. It is based on

a definition of the probability of resolution of maximum like-

lihood estimators (MLEs) which is computable in the asymp-

totic region of operation (in SNR and/or in large number of

snapshots) for the conditional model. The results obtained

with the proposed rationale must be regarded as an ”upper

bound” in terms of resolvability, in the sense it assumes that

the number of source is known and that all the sources are

present as well. The application case is the multiple tones es-

timation problem (Doppler frequencies estimation in radar).

2. PROBABILITY OF RESOLUTION

Throughout the present paper, unless otherwise stated, x

denotes the random observation vector of dimension N ,

Ω denotes the observations space and L2 (Ω) denotes the

complex Hilbert space of square integrable functions over

Ω. The probability density function (p.d.f.) of x is de-

noted p (x;Θ) and depends on a vector of P real parameters

Θ = (θ1, . . . , θP ) ∈ Φ, where Φ denotes the parame-

ter space. The probability of an event D ⊂ Ω is denoted

P (D;Θ). Let Θ0 be a selected value of the parameter Θ,

and ĝ (Θ0) (x) (ĝ (Θ0) in abbreviated form) an estimator of

g
(
Θ0

)
where g (Θ) =

(
g1 (Θ) , . . . , gQ (Θ)

)T

is a vector



of Q real-valued (for the sake of simplicity) functions of Θ.

For any selected value Θ0, ĝ (Θ0) (x) stands for a mapping

of the observation space Ω into an estimate of g
(
Θ0

)
.

2.1. Estimation precision and bounds

The quality (i.e. the precision) of an estimator ĝ (Θ0) can be

measured using the following canonical objective function:

OΘ0

(
ĝ (Θ0), ξ−, ξ+

)
=

P

(
Q⋂

q=1

(
̂gq (Θ0) ∈

]
gq

(
Θ0

)
− ξ−q , gq

(
Θ0

)
+ ξ+q

[)
;Θ0

)

(1)

where ξ− =
(
ξ−1 , . . . , ξ

−

Q

)T
and ξ+ =

(
ξ+1 , . . . , ξ

+
Q

)T
define

the (left and right) errors on the estimation of g
(
Θ0

)
and

OΘ0

(
ĝ (Θ0), ξ−, ξ+

)
is a measure of the probability that

errors does not exceed ξ− and ξ+. This objective function is

identified as “canonical” since it is deduced naturally from the

problem under study: the match between the observations of a

random vector and a deterministic vector of interest. We also

qualify it as exhaustive, in the sense that it incorporates all

the available information on the problem, in other words the

probabilities. Consequently, we consider that (1) defines the

exhaustive precision (of estimation). Nevertheless, it is more

fruitful practically to consider the quasi-exhaustive precision

obtained when ξ− = ξ+ = ξ, then OΘ0

(
ĝ (Θ0), ξ−, ξ+

)

(1) reduces to OΘ0

(
ĝ (Θ0), ξ

)
defined as:

OΘ0

(
ĝ (Θ0), ξ

)
=

P

(
Q⋂

q=1

(∣∣∣ ̂gq (Θ0)− gq
(
Θ0

)∣∣∣ < ξq

)
;Θ0

)
(2)

and is bounded by:

P

(
Q∑

q=1

(

̂gq(Θ0)−gq(Θ0)
)2

ξ2q
< 1;Θ0

)
≤ OΘ0

(
ĝ (Θ0), ξ

)

≤ P

(
Q∑

q=1

(

̂gq(Θ0)−gq(Θ0)
)2

ξ2q
< Q;Θ0

)

(3)

where
Q∑

q=1

(

̂gq(Θ0)−gq(Θ0)
)2

ξ2q
is a weighted total square error.

In the following, for the sake of legibility, we focus on the

case where g (Θ) = Θ, and Θ0 (respectively Θ̂0) is denoted

Θ (respectively Θ̂) wherever it is unambiguous.

2.2. Probability of resolution and bounds

Thus we consider a parameter estimation problem where

the parameters of interest are the vectors {θm}Mm=1, where

θ ∈ RP and θm 6= θl, ∀l 6= m ∈ [1,M ]. Then ΘT =

((
θ1

)T
, . . . ,

(
θM

)T
) (

P = PM,Q = P
)
, ξT =

(
ε1, . . . , εM

)

where εm = (εm1 , . . . , εmP ). Let Cm be the hypercube with

centre θm defined by Cm (εm) =

{
θ :

P⋂
p=1

∣∣θp − θmp
∣∣ < εmp

}
.

We define the probability of resolvability (of vectors of

multiple parameters θ) with precision ξ as the probability

OΘ

(
Θ̂, ξ

)
(2) when θ̂m ∈ Cm (εm) , ∀m ∈ [1,M ], and the

hypercubes are disjoint:

Cm (εm) ∩ Cl
(
εl
)
= ∅, ∀l 6= m ∈ [1,M ] . (4)

In other words, we do not consider as successful a trial lead-

ing to at least one θ̂m outside Cm (εm). The underlying idea

is that estimates switch among hypercubes Cm (εm) is not al-

lowed. Parameters vector {θm}Mm=1 will be said ”resolved”

by estimators Θ̂ if:

0.9 ≤ OΘ

(
Θ̂, ξ

)
s.t. (4) ≤ 0.99 (5)

2.3. Gaussian p.d.f.

The (lower and upper) bounds onOΘ

(
Θ̂, ξ

)
given by (3) are

particularly convenient when Θ̂ (x)−Θ ∼ N (b (Θ) ,C (Θ)),

that is Θ̂ (x) is a Gaussian estimator of Θ with bias vector

b (Θ) and covariance matrix C (Θ). Then a straightforward

linear transformation of the Gaussian random vector yields

that (3) is equivalent to :

P
(
eχ2

Q

(
δ (Θ) ,σ2 (Θ)

)
< 1

)
≤ OΘ

(
Θ̂, ξ

)

≤ P
(
eχ2

Q

(
δ (Θ) ,σ2 (Θ)

)
< Q

)

where δ (Θ) =
∥∥MT (Θ)D−1

ε
b (Θ)

∥∥2
, D−1

ε
C (Θ)D−1

ε
=

M (Θ)D
σ

2(Θ)M
T (Θ), (Dα)q,p = αqδ

q
p and eχ2

Q

(
δ,σ2

)

is a non-central quadratic form [3], that is an extension of

non-central chi-square with corresponding degrees of free-

dom in Q and positive noncentrality parameters in δ where

the power of each component is not constant:

eχ2
Q

(
δ =

Q∑
q=1

δq,σ
2

)
∼

Q∑
q=1

σ2
q

∣∣zq +
√
δq

∣∣2

σ2 =
(
σ2
1, . . . , σ

2
Q

)T
, z = (z1, . . . , zQ)

T ∼ N (0, I)

If δ = 0 (unbiased estimates) then u ∼ eχ2
Q

(
0,σ2

)
and:

p (u) =

∫
Q∏

q=1

(
1 + j2πfσ2

q

)−1
2 ej2πfudu =

0F
0
(
− 1

2D
−1
σ

2 , u
)

2
Q

2 Γ
(

Q
2

)
|D

σ
2 |

where 0F
0 ( ) is a generalized hypergeometric function [3].

3. ASYMPTOTIC PERFORMANCE OF

CONDITIONAL MODEL

Historically the first MSE lower bound for deterministic pa-

rameters to be derived was the Cramér-Rao Bound (CRB),
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Fig. 1. Single source matched filter output: 3 cisoids sepa-

rated by ∆θ3dB × 0.3

which was introduced to investigate fundamental limits of

a parameter estimation problem or to assess the relative

performance of a specific estimator (efficiency) [2]. It has

since become the most popular lower bound due to its sim-

plicity of calculation, the fact that in many cases it can be

achieved asymptotically (high SNR [4] and/or large num-

ber of snapshots [2]) by Maximum Likelihood Estimators

(MLE). This initial characterization of locally unbiased esti-

mators has been significantly generalized by Barankin work

[5], who established the general form of the highest lower

bound on MSE (BB) for uniformly unbiased estimates, but

unfortunately with a generally incomputable analytic solu-

tion. Therefore, since then, numerous works detailed in [5]

have been devoted to deriving computable approximations

of the BB and have shown that the CRB and the BB can

be regarded as key representatives of two general classes of

bounds, respectively the Small-Error bounds and the Large-

Error bounds. These works have also shown that in non-linear

estimation problems three distinct regions of operation can

be observed. In the asymptotic region, the MSE is small

and, in many cases, close to the Small-Error bounds. In the

a priori performance region where the number of indepen-

dent snapshots and/or the SNR are very low, the observations

provide little information and the MSE is close to that ob-

tained from the prior knowledge about the problem. Between

these two extremes, there is an additional ambiguity region,

also called the transition region. In this region, the MSE of

MLEs usually deteriorates rapidly with respect to Small-Error

bounds and exhibits a threshold behaviour corresponding to

a ”performance breakdown”. The nature of this phenomenon

is specified by a complicated non-smooth behaviour of the

likelihood function in the ”threshold” area where it tends to

generate outliers [2]. Small-Error bound such as the CRB
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Fig. 2. Bounds on probability of resolving multiple cisoids: 3
cisoids separated by ∆θ3dB × 0.3, T = 1

are not able to handle the threshold phenomena, whereas it

is revealed by Large-Error bounds that can be used to predict

the threshold value. Therefore, provided that one keeps in

mind the CRB limitations, that is, to become an excessively

optimistic lower bound when the observation conditions de-

grade (low SNR and/or low number of snapshots), the CRB

is still a lower bound of great interest for system analysis and

design in the asymptotic region.

3.1. Asymptotic performance of radar conditional model

The choice of focusing on the (Gaussian) conditional model

comes from our primary interest for active systems such as

radar (or sonar) where a known waveform is transmitted, and

the signals scattered from the targets of interest are used to

estimate their parameters. Typically, the received signals are

modelled as scaled, delayed, and Doppler-shifted versions

of the transmitted signal. Estimation of the time delay and

Doppler shift provides information about the range and radial

velocity of the targets. The use of spatial diversity, i.e. an-

tenna arrays, compared with a single sensor, guarantees more

accurate range and velocity estimation and allows estimation

of the targets direction. Last, but no least, waveform diversity

may be used to improve the estimation of all targets parame-

ters. In an active system, as the waveform parametric model is

known and deterministic (in opposition with a passive system

where a probabilistic modelling of the waveform is gener-

ally considered), the most accurate statistical prediction for

an observation will be obtained when considering the signal

amplitudes as deterministic (since it is well known that the

complex Gaussian amplitude modelling provide an average

unconditional CRB higher that the corresponding conditional

CRB [2]). The asymptotic (in SNR and/or in large number of



Fig. 3. Loglikelihood p.d.f. at limits of SNR interval allowing

resolution of: 3 cisoids separated by ∆θ3dB × 0.3, T = 1

snapshots) Gaussianity and efficiency of CMLEs (conditional

MLEs) in the multiple parameters case has been proved un-

der the assumption that the maximum of the (reduced) log

likelihood function belongs to its main lobe. As an example,

let us consider the general linear observation model:

xt

(
Θ0

)
= A

(
Θ0

)
st + nt, t ∈ [1, T ]

where T is the number of independent observation, M is

the number of signal sources, st = (st,1, . . . , st,M )
T

is

the vector of complex amplitudes of the M sources for

the tth observation, A (Θ) = [a (θ1) , . . . , a (θM )] where

Θ = (θ1, . . . , θM )
T

and a ( ) is a vector of N parametric

functions depending on a single parameter θ (for sake of sim-

plicity), nt are Gaussian complex circular independent noises

with spatially white covariance matrix: Cn = σ2
nIN , inde-

pendent from the M sources. Then the reduced log likelihood

function L
(
Θ;Θ0

)
is given by [2]:

L
(
Θ;Θ0

)
=

T∑
t=1
‖ΠA(Θ)xt(Θ0)‖2

TM
∼ CX 2

MT

(
F

(
Θ;Θ0

)
, σ2

TM

)

F
(
Θ;Θ0

)
=

T∑
t=1
‖ΠA(Θ)A(Θ0)st‖

2

TM

where F
(
Θ;Θ0

)
is a generalized correlation function (aka

generalized matched filter) and CX 2
K

(
δ, σ2

)
denotes a non-

central complex (circular) chi-square with corresponding

degrees of freedom in K and positive noncentrality parame-

ters in δ. Let Θ̂ , Θ̂ (x) = argmax
{
L
(
Θ;Θ0

)}
denote

the CMLE of Θ and let ΥΘ0 (α) =

{
Θ :

F(Θ;Θ0)
F (Θ0;Θ0) > α

}

denote the main lobe at α (0 < α < 1). Then a condition of

asymptotic region of operation for CMLE can be :

P

(
Θ ∈ image

(
Θ̂
)
| Θ /∈ ΥΘ0

(
1

2

))
≈ 0 (6)
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Fig. 4. Single source matched filter output: 3 cisoids sepa-

rated by ∆θ3dB × 0.5

where ΥΘ0

(
1
2

)
is the usual main lobe at −3dB. The quasi-

nullity of the probability of an outlier (6) can be demonstrated

by computing the p.d.f. of L
(
Θ0;Θ0

)
and L

(
Θ;Θ0

)

where F
(
Θ;Θ0

)
= 1

2 and by checking that their sup-

ports do not overlap above a certain p.d.f. threshold value, as

small as possible (10−30 in the present paper). As the p.d.f.

of CX 2
MT

(
F

(
Θ;Θ0

)
, σ2

TM

)
is an increasing function in

F
(
Θ;Θ0

)
, it is sufficient to check that p.d.f. of L

(
Θ0;Θ0

)

and L
(
Θ;Θ0

)
where F

(
Θ;Θ0

)
= 1

2 do not overlap to

ensure that this property is valid for any Θ /∈ ΥΘ0

(
1
2

)
, what

proves that image
(
Θ̂
)
⊂ ΥΘ0

(
1
2

)
. Then, in the asymptotic

region [6]:

Θ̂ (x) ∼ N

(
Θ,

σ2
n

2T Re
{
H (Θ)⊙ R̂T

s

}−1
)

R̂s =
T∑

t=1

sts
H
t

T
,H (Θ) = ∂A(Θ)

∂θ

H
Π⊥

A(Θ)
∂A(Θ)

∂θ

and it has been proved that for each source [6]: the highest

(worst) variance is obtained when the sources amplitudes are

fully correlated and the lowest (best) variance is obtained

when the sources amplitudes are uncorrelated.

3.2. Doppler frequency (multiple tones) estimation

As an example for radar, we consider the problem of Doppler

frequency estimation which is a particular application case of

the very general multiple tones estimation problem where :

a (θ) =
[
1, . . . , ej2πnθ, . . . , ej2π(N−1)θ

]T
(7)

For sake of simplicity but without loss of generality, we con-

sider only scenarios where the Doppler frequencies are eq-

uispaced with a step dθ = ∆θ3dB × β in order to take into
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Fig. 5. Bounds on probability of resolving multiple cisoids: 3
cisoids separated by ∆θ3dB × 0.5, T = 2

account an isotropic estimation error ξ = dθ
2 1M in the def-

inition of probability of resolution (5), where 1M is a M -

dimensional vector with components equal to 1. Additionally

in all scenarios: N = 32 and the target amplitude are equal

and therefore fully correlated st =
√

SNR
N

1M (but it may

not be the worst correlation case [6]). The main resolution

features of each scenario are described with 3 figures:

• the output of the single source matched filter(
1
N

∥∥∥a (Θ)H xt

(
Θ0

)∥∥∥
2
)

which could be the first step in a

practical implementation of the CMLE (Clean algorithm, Al-

ternating Projection algorithm).

• the probability (lower and upper) bounds (PLB and PUB)

defined by (3) under (4) where ξ = dθ
2 1M , as a function of the

SNR computed at output of the single source matched filter.

These bounds allow to determine the SNR interval containing

the SNR from which the sources are resolved according to

(5): SNRres. Indeed : SNR (PUB = 0.99) ≤ SNRres ≤
SNR (PLB = 0.9) .

• the p.d.f. of L
(
Θ0;Θ0

)
and L

(
Θ0

3dB ;Θ
0
)

for

SNR (PUB = 0.99) and SNR (PLB = 0.9) to prove that

within [SNR (PUB = 0.99) , SNR (PLB = 0.9)] the con-

dition of asymptotic region of operation for CMLE is valid.

4. CONCLUSION

In the first scenario SNRres ∈ [54.4, 55.6] dB, which is a

quite high required value to resolved a non demanding high

resolution scenario of 3 targets (dθ = ∆θ3dB × 0.3). This

result suggests that high resolution techniques in operational

radar system with a limited transmitted power will be rather

Fig. 6. Loglikelihood p.d.f. at limits of SNR interval allowing

resolution of: 3 cisoids separated by ∆θ3dB × 0.5, T = 2

a myth. On the other hand the addition of a second observa-

tion (T = 2) in the second scenario coupled with more spaced

parameters values (dθ = ∆θ3dB × 0.5) allows to decrease

SNRres ∈ [28.5, 29.8]. This result suggests that high resolu-

tion techniques in operational radar system can be a reality in

some not too demanding scenarios provided a relevant wave-

form is transmitted.
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