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Abstract—In statistical signal processing, hybrid parameter
estimation refers to the case where the parameters vector to esti-
mate contains both deterministic and random parameters. Lately
computationally tractable hybrid Cramér-Rao lower bounds for
discrete-time Markovian dynamic systems depending on un-
known time invariant deterministic parameters has been released.
However in many applications (radar, sonar, telecoms, ...) the
unknown deterministic parameters of the measurement model
are time variant which prevents from using the aforementioned
bounds. It is therefore the aim of this communication to tackle
this issue by introducing new computationally tractable hybrid
Cramér-Rao lower bounds.

I. INTRODUCTION

In the Bayesian estimation framework, discrete-time Marko-
vian dynamic systems (MDS) arises in various applications
such as adaptive control, analysis and prediction of nonsta-
tionary time series [1], or signal source tracking (radar, sonar,
telecoms) [2]. As is well known, the optimal estimator for this
problem cannot be built in general, and it is necessary to turn
to one of the large number of existing suboptimal filtering
techniques [1][2]. Assessing the achievable performance may
be difficult, and we have to resort to simulations and com-
paring proximity to Bayesian lower bounds corresponding to
optimum performance [2]. Actually, most discrete-time MDS
incorporate some deterministic parameters which can be either
known or unknown according to the experimental conditions
[2]. Even when the deterministic parameters are known, some
of the true values may originate from a prior calibration
process which accuracy impacts on the optimum performance
of random parameter estimates. In both cases, there is a need
for computationally tractable hybrid lower bounds for discrete-
time MDS depending on unknown deterministic parameters.

The first hybrid lower bound, the so-called hybrid Cramér-
Rao bound (HCRB), has been introduced in [3], extended in
[4] to the case where the prior probability density function
(pdf) of the random parameters depends on deterministic
parameters, and its asymptotic tightness has been further
analyzed in [5]. This characterization of hybrid estimation has
been generalized by Reuven and Messer [6] who introduced
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the first ”large-error” hybrid bound, the so-called hybrid
Barankin Bound (HBB), in order to handle the threshold phe-
nomena and of which one limiting form yields the HCRB. This
seminal work [6] has been lately extended to new ”large-error”
hybrid bounds [7][8][9] in order to improve the estimation of
the transition region where the threshold phenomena occurs.
Unfortunately, the computational cost of hybrid ”large-error”
bounds is prohibitive in most applications when the number
of unknown parameters increases. All these works have shown
that, like the deterministic CRB and Bayesian CRB (BCRB),
the HCRB is valid in the asymptotic region only, i.e., when
signal to noise ratio is high or the number of observations
(measurements) is large.

Therefore, provided that one keeps in mind its limitations,
the HCRB is a lower bound of great interest for system
analysis and design in the asymptotic region. For that pur-
pose, computationally tractable HCRB for discrete-time MDS
depending on unknown time invariant deterministic parameters
has been released only lately in [10] and extended in [11].
However in many applications (radar, sonar, telecoms, ...) the
unknown deterministic parameters of the measurement model
are time variant which prevents from using the bounds derived
in [11]. It is therefore the aim of this communication to
tackle this issue by introducing new computationally tractable
HCRB.

II. BACKGROUND ON HCRB FOR MDS WITH UNKNOWN
DETERMINISTIC PARAMETERS

In hybrid parameter estimation one wishes to estimate
an unknown hybrid parameter vector (x;θ) from a random
observation vector y ∈ RN ′ , where for L column vectors
al, (a1; a2; . . . ; aL) , (aT1 ,a

T
2 , . . . ,a

T
L)
T denotes the vertical

concatenation. Some prior knowledge is available on random
parameter x ∈ RP ′ that is incorporated by an a priori
pdf p (x) which support is a subset Πr of RP ′ . No such
knowledge is available on θ ∈ Πd ⊂ RD′ and thus it
is considered deterministic. In the general case, p (x) may
depend on the unknown parameter θ, and it is denoted p (x|θ).
The conditional pdf of y given x parameterized by θ is
p (y|x,θ) and their joint pdf parameterized by θ is given by
p (y,x|θ) = p (y|x,θ) p (x|θ). Then, for any estimators θ̂ (y)



of θ and x̂ (y) of x, the HCRB is given by [3][4][5][11]:

Ey,x|θ

[
e (y) e (y)

T
]
� HCRB(x;θ) = J−1(x;θ), (1)

J(x;θ) = Ey,x|θ

[
∂ ln p (y,x|θ)

∂ (x;θ)

∂ ln p (y,x|θ)

∂ (x;θ)
T

]
, (2)

where e (y) = (x̂ (y) − x; θ̂ (y) − θ), Ey,x|θ [g (y,x)] is
the statistical expectation of the vector of functions g ( )
with respect to y and x parameterized by θ, and for two
matrices, A � B means that A−B is positive semi-definite.
The regularity conditions for the hybrid Fisher information
matrix (HFIM) J(x;θ) to be of the usual form (2) are [11]:
(R1): Πr = RP ′ ,
(R2): Ey,x|θ

[
∂ ln p(y,x|θ)

∂xp′

2]
, Ey,x|θ

[
∂ ln p(y,x|θ)

∂θd′

2]
<∞.

Moreover, under its usual form (1), the HCRB is a lower bound
for the class of estimates satisfying (R3):
Ey,x|θ

[(
x̂ (y)− x; θ̂ (y)− θ

)]
= (µ; 0).

Our main concern is the derivation of a computationally
tractable HFIM (2) for hybrid discrete-time MDS represented
with the state and measurement equations:

xk = fk−1 (xk−1,wk−1,α) , yk = hk (xk,vk,λk) (3)

where k ≥ 1 is a time index, xk is the P -dimensional
state vector, yk is the N -dimensional measurement vector,
fk ( , ,α) and hk ( , ,λk) are known parametric vector func-
tions depending on an unknown deterministic parameter vector
(α and λk respectively). The process noise sequence {wk}
and the measurement noise sequence {vk} are mutually inde-
pendent white sequences described by known pdfs p (wk|β)
and p (vk|µk), respectively, depending on an unknown deter-
ministic parameter vector (β and µk respectively). The noises
are independent of the initial state x0 described by the known
pdf p (x0|α).
Let adopt the notational convention: ∀l ≤ k, δl:k =
(δl; . . . ; δk) where all vectors are of same dimension. At time
indexes 1, 2, . . . , k the dependency of the state and measure-
ment on deterministic unknown parameters is as follows:∣∣∣∣ x1 , x1 (α,β) = f0 (x0,w0 (β) ,α)

y1 , y1 (λ1,µ1,α,β) = h1 (x1 (α,β) ,v1 (µ1) ,λ1)
,∣∣∣∣ x2 , x2 (α,β) = f1 (x1 (α,β) ,w1 (β) ,α)

y2 , y2 (λ2,µ2,α,β) = h2 (x2 (α,β) ,v2 (µ2) ,λ2)
,

...∣∣∣∣ xk , xk (α,β) = fk−1 (xk−1 (α,β) ,wk−1 (β) ,α)

yk , yk (λk,µk,α,β) = hk (xk (α,β) ,vk (µk) ,λk)
.

(4)
Therefore, the dependency of the state and measurement on
deterministic unknown parameters on a horizon of k points
from the first measurement is as follows:

k ≥ 1 :

∣∣∣∣∣ x0:k , x0:k (α,β) , x0:k (θ0)

y1:k , y1:k

(
λ1:k,µ1:k,α,β

)
, y1:k (θk)

, (5)

θ0 = (α;β) , k ≥ 1 : θk =
(
λ1:k;µ1:k;θ0

)
, (6)

where θk is the vector gathering all the unknown deterministic
parameters. The state transition and the measurement pdfs
depend on unknown deterministic parameters:

p (xk|xk−1) , p (xk|xk−1,θ0) , p (yk|xk) , p (yk|xk,λk,µk,θ0) ,
(7)

and we suppose that both p (xk|xk−1,θ0) and
p (yk|xk,λk,µk,θ0) are twice differentiable with respect to
all their arguments. Since (4) is a MDS:

p (y1:k,x0:k|θk) = p (x0|α)

k∏
l=1

p (yl|xl,λl,µl,θ0) p (xl|xl−1,θ0)

(8)
From a theoretical point of view, we are primarily interested
in the HFIM (2) on (x;θ) , (xk;θk) associated to the
measurement vector y , y1:k resulting from the set of k
measurements y1,...,yk:

J(xk;θk) = Ey1:k,xk|θk

[
∂ ln p (y1:k,xk|θk)

∂ (xk;θk)

∂ ln p (y1:k,xk|θk)

∂ (xk;θk)
T

]
which alternative formula is [3][4][5][6]:

J(xk;θk) = Ey1:k,xk|θk

[
−∂2 ln p (y1:k,xk|θk)

∂ (xk;θk) ∂ (xk;θk)
T

]
(9)

Unfortunately the computation of (9) requires the deriva-
tion of the marginal pdf p (y1:k,xk|θk) from (8) which is
generally mathematically intractable [2][5][12]. However an
upper bound of (9) can be derived from the HFIM (2) on
(x;θk) , (x0:k;θk) associated to the measurement vector
y , y1:k [11]:

J(x0:k;θk) = Ey1:k,x0:k|θk

[
−∂2 ln p (y1:k,x0:k|θk)

∂ (x0:k;θk) ∂ (x0:k;θk)
T

]
.

(10)
Indeed, if we decompose J(x0:k;θk) as:

J(x0:k;θk) =

[
J11
k Bk

BT
k Ck

]
,

J11
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂x0:k−1∂xT
0:k−1

]
Bk = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂x0:k−1∂(xk;θk)
T

]
Ck = Ey1:k,x0:k|θk

[
− ∂2 ln p(y1:k,xk|θk)

∂(xk;θk)∂(xk;θk)
T

] ,

then [11]:

J̃(xk;θk) � J(xk;θk) ⇔ HCRB(xk;θk) � J̃−1(xk;θk)
, (11)

J̃(xk;θk) = Ck −BT
k

(
J11
k

)−1
Bk. (12)

J̃−1(xk;θk)
defines a looser (in comparison with HCRB(xk;θk))

but general computable hybrid bound for discrete-time MDS
pdf (8). However the computation of J̃−1(xk;θk)

(11) may
become rapidly computationally prohibitive and unstable since
J11
k and J̃(xk;θk) are matrices with unbounded dimension as

the time index k increases (a (PK × PK) matrix and a
((P + dimθk)× (P + dimθk)) matrix, respectively). Hence
the need of a recursive form involving matrices with bounded
dimensions.



III. A NEW RECURSIVE HCRB FOR MDS WITH
TIME-VARIANT MEASUREMENT PARAMETERS

From a practical point of view, in estimation problem such
(3)(4), at each time index k, the vector of parameters of interest
is rather (xk;ωk), ωk = (λk;µk;α;β), than (xk;θk). In that
perspective, we can reparameterize (x0:k;θk) as:(

z0:k
θ0

)
,

∣∣∣∣ k = 0 : z0 = x0

k ≥ 1 : zk = (xk;λk;µk)
, (13)

and rearrange (xk;θk) as:

vk =
(
γk−1; zk;θ0

)
, γk−1 =

(
λ1:k−1;µ1:k−1

)
. (14)

Then:

HCRBvk
=

[
HCRB

γk−1
vk HCRB

γk−1,(zk;θ0)
vk

HCRB
(zk;θ0),γk−1
vk HCRB(zk;θ0)

vk

]
and:

HCRB
(xk;ωk)
(xk;θk)

= HCRB(zk;θ0)
vk

� J̃−1(zk;θ0) (15)

where J̃(zk;θ0) can be decomposed into block matrices:

J̃(zk;θ0) =

[
J̃zk,zk

k J̃zk,θ0

k

J̃θ0,z
k J̃θ0,θ0

k

]
(16)

which obey the recursion:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J̃zk,zk

k = D22
k−1 −

(
D12
k−1
)T (

D11
k−1 + J̃

zk−1,zk−1

k−1

)−1
D12
k−1

J̃zk,θ0

k = D23
k−1 −

(
D12
k−1
)T (

D11
k−1 + J̃

zk−1,zk−1

k−1

)−1
×
(
D13
k−1 + J̃

zk−1,θ0

k−1

)
J̃θ0,θ0

k = D33
k−1 + J̃θ0,θ0

k−1 −
(
D13
k−1 + J̃

zk−1,θ0

k−1

)T
×
(
D11
k−1 + J̃

zk−1,zk−1

k−1

)−1 (
D13
k−1 + J̃

zk−1,θ0

k−1

)
(17)

where:∣∣∣∣∣∣∣∣∣∣∣∣∣

D11
k−1 = Exk,xk−1|θ0

[
−∂

2 ln p(xk|xk−1,θ0)

∂zk−1∂zT
k−1

]
D12
k−1 = Exk,xk−1|θ0

[
−∂

2 ln p(xk|xk−1,θ0)

∂zk−1∂zT
k

]
D22
k−1 = Eyk,xk|λk,µk,θ0

[
−∂

2 ln p(yk|xk,λk,µk,θ0)

∂zk∂zT
k

]
+ Exk,xk−1|θ0

[
−∂

2 ln p(xk|xk−1,θ0)

∂zk∂zT
k

]
(18)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D13
k−1 = Exk,xk−1|θ0

[
−∂

2 ln p(xk|xk−1,θ0)

∂zk−1∂θT
0

]
D23
k−1 = Eyk,xk|λk,µk,θ0

[
−∂

2 ln p(yk|xk,λk,µk,θ0)

∂zk∂θT
0

]
+ Exk,xk−1|θ0

[
−∂

2 ln p(xk|xk−1,θ0)

∂zk∂θT
0

]
D33
k−1 = Eyk,xk|λk,µk,θ0

[
−∂

2 ln p(yk|xk,λk,µk,θ0)

∂θ0∂θT
0

]
+ Exk,xk−1|θ0

[
−∂

2 ln p(xk|xk−1,θ0)

∂θ0∂θT
0

]
(19)

J̃(z0;θ0) = J(z0;θ0) = Ex0|θ0

[
−∂2 ln p (x0|α)

∂ (x0;θ0) ∂ (x0;θ0)
T

]
(20)

Proof:
The first step consists in reformulating (11)(12) after the
rearrangement (14) leading to:

J̃vk
� Jvk

, J̃vk
= Ck −BT

k

(
J11
k

)−1
Bk, (21)

J11
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂x0:k−1∂xT
0:k−1

]
Bk = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂x0:k−1∂vT
k

]
Ck = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,xk|θk)

∂vk∂vT
k

]
Let uk =

(
x0:k−1;γk−1; zk;θ0

)
, (x0:k−1; vk), that is

(x0:k;θk) after rearrangement, then:

Juk
= Ey1:k,x0:k|θk

[
−∂2 ln p (y1:k,x0:k|θk)

∂uk∂uTk

]
=

[
J11
k Bk

BT
k Ck

]
.

Therefore, using block matrix inversion:

HCRBuk
= J−1uk

=

[
HCRBx0:k−1

uk
HCRBx0:k−1,vk

uk

HCRBvk,x0:k−1
uk

HCRBvk
uk

]
,

HCRBvk
uk

=
(
Ck −BT

k

(
J11
k

)−1
Bk

)−1
= J̃−1vk

.

Additionally, according to (13)(14):

z0:k−1 = P0:k−1

(
x0:k−1
γk−1

)
⇒

 z0:k−1(
zk
θ0

)  =

[
P0:k−1 0

0 I

]
uk

where P0:k is a permutation matrix; therefore:

HCRBuk
=

[
PT

0:k−1 0
0 I

]
HCRB(z0:k;θ0)

[
P0:k−1 0

0 I

]
,

leading to the key identity:

HCRB(zk;θ0)
uk

= HCRB
(zk;θ0)
(z0:k;θ0)

. (22)

Indeed, (21) yields:

J−1vk
� J̃−1vk

⇔ HCRBvk
� HCRBvk

uk
,

that is, in particular:

HCRB(zk;θ0)
vk

� HCRB(zk;θ0)
uk

= HCRB
(zk;θ0)
(z0:k;θ0)

. (23)

The second step consists in showing that

J̃(zk;θ0) =
(
HCRB

(zk;θ0)
(z0:k;θ0)

)−1
=

[
J̃zk,zk

k J̃zk,θ0

k

J̃θ0,zk

k J̃θ0,θ0

k

]
obey the recursion defined by (17-20). First J(z0:k;θ0) can be
broken down as:

J(z0:k;θ0) =

 J11
k J12

k J13
k(

J12
k

)T
J22
k J23

k(
J13
k

)T (
J23
k

)T
J33
k

 ,

J11
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂z0:k−1∂zT
0:k−1

]
,

J12
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂z0:k−1∂zT
k

]
,

J13
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂z0:k−1∂θT
0

]
,

J22
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂zk∂zT
k

]
,

J23
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂zk∂θT
0

]
,

J33
k = Ey1:k,x0:k|θk

[
−∂

2 ln p(y1:k,x0:k|θk)

∂θT
0 ∂θ

T
0

]
.



Therefore, using block matrix inversion:

J̃(zk;θ0) =

[
J22
k J23

k

J32
k J33

k

]
−
[

J21
k

J31
k

] [
J11
k

]−1 [
J12
k J13

k

]
that is: ∣∣∣∣∣∣∣∣

J̃zk,zk

k = J22
k − J21

k

(
J11
k−1
)−1

J12
k ,

J̃θ0,z
k = J23

k − J21
k

(
J11
k

)−1
J13
k ,

J̃θ0,θ0

k = J33
k − J31

k

(
J11
k

)−1
J13
k .

(24)

Moreover, for MDS, (8) leads to:

p (y1:k,x0:k|θk) = p (yk|xk,λk,µk,θ0) p (xk|xk−1,θ0)

× p
(
y1:k−1,x0:k−1|θk−1

)
yielding:

J11
k =

[
J11
k−1 J12

k−1
J21
k−1 J22

k−1 + D11
k−1

]
, J12

k =

[
0

D12
k−1

]
,

J22
k = D22

k−1, J13
k =

[
J13
k−1

J23
k−1 + D13

k−1

]
,

J23
k = D23

k−1, J33
k = J33

k−1 + D33
k−1,

where Dij
k−1 are given by (18-19). Last, using once again

block matrix inversion:(
J11
k

)−1
=

[
Φk−1 −Γk−1∆

−1
k−1

−∆−1k−1Γ
T
k−1 ∆−1k−1

]
,

∆k−1 = D11
k−1 + J22

k−1 − J21
k−1

(
J11
k−1
)−1

J12
k−1,

Γk−1 =
(
J11
k−1
)−1

J12
k−1,

Φk−1 =
(
J11
k−1
)−1

+ Γk−1∆
−1
k−1Γ

T
k−1.

Then noting that ∆k−1 = D11
k−1+J̃

zk−1,zk−1

k−1 , a few additional
lines of calculus allows to show that equivalent forms of
J̃zk,zk

k , J̃θ0,θ0

k and J̃θ0,z
k in (24) are given by (17).

IV. FURTHER CONSIDERATIONS

First, some special cases of interest can be easily derived
by updating the definitions of θk, p (xk|xk−1), p (yk|xk) and
p (x0|α) accordingly.
A first case of interest is θk = θ0, i.e. the measurements
do not depend on deterministic parameters, then zk = xk,
p (xk|xk−1) , p (xk|xk−1,θ0), p (yk|xk) , p (yk|xk,θ0),
and (15-16) reduce to:

HCRB(xk;θ0) � J̃−1(xk;θ0)
, J̃(xk;θ0) =

[
J̃xk,xk

k J̃xk,θ0

k

J̃θ0,xk

k J̃θ0,θ0

k

]
,

which are [11, (7)(10)] where θ , (α;β), and (17-20) reduce
to [11, (11-14)].
A second case of interest is θk = ∅, i.e. there is no un-
known deterministic parameter, then zk = xk, p (xk|xk−1) ,
p (xk|xk−1), p (yk|xk) , p (yk|x), and (15-16) and (17-20)
reduce to:

HCRBxk
� J̃−1xk

, J̃xk
= J̃xk,xk

k ,

J̃xk,xk

k = D22
k−1 −

(
D12
k−1
)T (

D11
k−1 + J̃

xk−1,xk−1

k−1

)−1
D12
k−1,

D11
k−1 = Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂xk−1∂xT
k−1

]
,

D12
k−1 = Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂xk−1∂xT
k

]
,

D22
k−1 = Eyk,xk

[
−∂2 ln p(yk|xk)

∂xk∂xT
k

]
+ Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂xk∂xT
k

]
and J̃(z0;θ0) , Jx0

, which are (21-25) in [12].
A third case of interest is θ0 = ∅, i.e. the state does
not depend on deterministic parameters, then p (xk|xk−1) ,
p (xk|xk−1), p (yk|xk) , p (yk|zk), and (15-16) and (17-20)
reduce to:

HCRBzk
� J̃−1zk

, J̃zk
= J̃zk,zk

k ,

J̃zk,zk

k = D22
k−1 −

(
D12
k−1
)T (

D11
k−1 + J̃

zk−1,zk−1

k−1

)−1
D12
k−1,

D11
k−1 = Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂zk−1∂zT
k−1

]
,

D12
k−1 = Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂zk−1∂zT
k

]
,

D22
k−1 = Eyk,xk|λk,µk

[
−∂2 ln p(yk|zk)

∂zk∂zT
k

]
+Eyk,xk|λk,µk

[
−∂2 ln p(xk|xk−1)

∂zk∂zT
k

]
and J̃z0 , Jx0 which is a generalization of [12].
Second, it is worth noting that, at each time index k, there is
no particular requirements on the dimension of λk or µk; in
particular it is possible to have λl = ∅ and/or µl = ∅ for a
subset of time index l ∈ {l1,l2, . . . , lJ ≤ k}, what means that
the new HCRB (15) allows to take into account a mixture of
measurements where the deterministic parameters are either
known or unknown (which is not possible with the HCRB
derived in [11]).
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