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∗ Université Paris-Sud/L2S, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette
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ABSTRACT

In this paper, we derive analytical expressions of the Weiss-
Weinstein bound (WWB) in the context of observations
whose frequency abruptly changes at an unknown time in-
stant. Since both frequencies before and after the change
are assumed to be unknown as well, it is appropriate to con-
sider the multiparameter version of the WWB. Furthermore,
numerical simulations are provided in order to illustrate the
tightness of the proposed bound expressions regarding to the
estimates errors.

Index Terms— Weiss-Weinstein bound, change-point,
frequency estimation, MSE bayesian lower bound

1. INTRODUCTION

In many practical applications, abrupt changes, refered to as
change-points, may occur in the distribution of the signal of
interest, e.g., in quality control, in speech processing, as well
as in navigation system monitoring [1]. Such problem is also
encountered in radar signal processing, and more specifically
in SAR image edge detection [2], in clutter map segmentation
[3] or in the detection of target signals in clutter [4]. Most of-
ten, the time instants at which the changes occur are unknown
and must be estimated jointly with the parameters of interest
that change from one change-point to another.

In such scenario, change-point estimation has been widely
studied in the last five decades. A plethora of algorithms
have been proposed, among which the maximum likelihood
based schemes received a particular attention [5, 6, 7]. Its op-
timality properties led to important studies of its asymptotic
distribution. First, in [5], Hinlkey derived the exact asymp-
totic distribution of the maximum likelihood estimate (MLE),
and proposed in the same paper a computationally tractable
approximation of the latter. Fotopoulos and Jandhyala later
worked on deriving exact computable forms of the asymp-
totic distribution of the MLE, in the cases of exponentially
distributed and Gaussian random processes [6, 7]. The knowl-
edge of the distribution of the MLE, which is highly informa-
tive, seems unfortunately impossible to obtain in non asymp-
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totic context. At least, as far as we know, such result does
not exist in the literature. To overcome this difficulty, an al-
ternative is to study the so-called lower bounds on the vari-
ance of the change-point estimation problem. One of the
most commonly used lower bound on the mean squarre er-
ror (MSE), is the Cramér-Rao bound (CRB) due to its easy
derivation and tightness in the asymptotic region [8, 9]. Nev-
ertheless, the CRB is not tight in the non-asymptotic region
and more importantly, it requires strong regularity conditions
as the smoothness of the log likelihood fonction which is not
satisfied in our context since the change-point parameter is
discrete. A first alternative was to regularize the problem by
approximating the signal by a smoother one [10, 11]. A sec-
ond alternative was to consider a lower bound on the MSE that
does not require the smoothness of the log-likelihood func-
tion. This has been first done using the Chapman-Robbins
bound for a single change-point in [12], and then extended
to multiple changes in [13], both with known parameters of
interest before and after the change-point(s). The results in
both cases are not satisfying since the resulting bounds are
not tight. This drawback led us to consider the problem from
a Bayesian point of view, for which we recently derived the
Weiss-Weinstein bound (WWB) for a single change-point and
known parameters of interest [14].

In this paper, we extend [14] to the case of complex
observation vector with unknown (changing) parameters of
interest. Specifically, we consider a widely used model in the
literature, namely the complex sinusoidal signal, where the
unknown parameters of interest (frequencies) are suject to a
change at an unknown time instant. We chose cisoid model
for sake of clarity, nevertheless, it is encountered in several
radar area or can be easily extended to specific radar applica-
tions involving sophisticated model based on the cisoid. One
can cite target detection in abruptly non-stationary Doppler-
spread clutter [15, 4]. The aim is to analyze the estimation
performance on both the frequencies before and after the
change jointly with the time instant at which the change oc-
curs. It is known that the problem of frequency estimation is
non-linear and gives rise to a threshold phenomenon under
which the estimation performance is highly degraded [16].
Consequently, the use of the WWB is interesting since the
breakdown point is also rendered by this bound, unlike the
CRB [17]. Finally, this study allows us to have a glance at



how the estimation behavior is influenced by the joint esti-
mation of these two types of parameters, namely the discrete
change-point as well as the continuous frequencies parame-
ters.

2. PROBLEM FORMULATION

Let us consider the complex sinusoidal model for frequency
change-point scenario given by{

y (n) = ei2πf1n + w (n) for n = 1, . . . , τ

y (n) = ei2πf2n + w (n) for n = τ + 1, . . . , N
(1)

where y (n) denotes the observation at the time instant n, f1

and f2 are unknown (normalized) frequencies, τ is the un-
known change-point, and w (n) is a zero mean, complex, cir-
cular, Gaussian, i.i.d. noise with variance σ2. Model (1) can
be seen as a simplified model of radars for target detection in
abruptly non-stationary Doppler-spread clutter [15, 4].

The whole observation can be gathered in the vector
y

∆
=
(
y (1) , . . . , y (N)

)T ∈ Ω, whose mean is denoted by

sτ (f1, f2)
∆
=
(
ei2πf1 , . . . , ei2πf1τ , ei2πf2(τ+1), . . . , ei2πf2N

)T
and the proper noise vector by w

∆
=
(
w (1) , . . . , w (N)

)T ∼
CN

(
0, σ2IN

)
. Consequently, (1) can be rewritten as

y = sτ (f1, f2) +w. (2)

Following a Bayesian approach, we assume a uniform a
priori for the normalized frequencies, i.e., fi ∼ U[− 1

2 ,
1
2 ],

i = 1, 2, and that τ follows a discrete uniform distribution
between 1 and N − 1, i.e., τ ∼ U{1,...,N−1}. The unknown
parameter vector is denoted by θ = (f1, f2, τ)

T ∈ Θ, in
which Θ = R2 × N. Since every component of θ is inde-
pendent one from another, the joint prior pdf can be written
as

p (f1, f2, τ = k) = I[− 1
2
, 1
2 ]

(f1) I[− 1
2
, 1
2 ]
(f2)

I{1,...,N−1}(k)

N − 1
(3)

where IA (x) denotes the indicator function w.r.t. the set A,
i.e., it equals 1 if x ∈ A and 0 otherwise.

3. WWB DEFINITION AND DERIVATION

3.1. Background on the WWB

The multiparameter form of the WWB [18] satisfies the fol-
lowing matrix inequality for any Bayesian estimator θ̂ (y) of
θ:

Ey,θ

{[
θ̂ (y)− θ

][
θ̂ (y)− θ

]T}
� HG−1HT (4)

in which A � B means A−B is a nonnegative matrix, H =
[θ1 − θ,θ2 − θ,θ3 − θ] is a function of the so-called test-
points {θ1,θ2,θ3} which can be chosen by the user as long
as each θq ∈ Θ. We define hq = θq−θ and H becomes H =

[h1,h2,h3]. The 3 × 3 matrix G is defined by its (i, j)-th
element as

Gi,j=

Ey,θ

{[
Lsi(y,θ+hi,θ)−L1−si(y,θ−hi,θ)

]
×
[
Lsj(y,θ+hj ,θ)−L1−sj(y,θ−hj ,θ)

]}
Ey,θ

{
Lsi(y,θ+hi,θ)

}
Ey,θ

{
Lsj(y,θ+hj ,θ)

} (5)

where L (y,α,β) = p(y,α)
p(y,β) . The inequality (4) holds for all

combinations of hq and 0 < sq < 1 such that G is invertible.
Then, the WWB is obtained by maximizing the right side of
(4) w.r.t. the degrees of freedom hq and sq . To reduce the
computational cost of this maximization procedure, we first
assume one test point per parameter, i.e., hq has only one non-
zero element hq , leading to H = diag (h1, h2, h3). Second, it
often has been noticed numerically that choosing sq = 1

2 ∀q
leads to the maximum bound, thus we make this choice here
and perform the maximization only with respect to h1, h2 and
h3. Consequently, (5) can be rewritten as

Gi,j =
ζ(hi,hj)+ζ(−hi,−hj)−ζ(hi,−hj)−ζ(−hi,hj)

ζ (hi,0) ζ (hj ,0)
(6)

where

ζ(hi,hj) =

∫
Θ

∫
Ω

√
p (y,θ+hi) p (y,θ+hj)dydθ (7)

in which the notation
∫
Θ

·dθ stands for
∫
R

∫
R

∑
N · df1df2.

3.2. Derivation of the WWB

3.2.1. Derivation of the diagonal terms G1,1 and G2,2

We start by deriving G1,1, relative to frequency f1, from
which we will deduce G2,2 for frequency f2. First,

ζ(h1,0)=

∫
Θ

[∫
Ω

√
p(y|θ+h1) p(y|θ)dy

]√
p(θ+h1) p(θ)dθ (8)

where p (θ) is given by (3) and p (θ+h1) is determined ac-
cordingly:

p (θ+h1) = I[−1
2
−h1,

1
2
−h1](f1) I[−1

2
, 1
2 ]
(f2)

I{1,...,N−1}(k)

N − 1
(9)

Consequently,√
p(θ+h1) p(θ) = I[−1

2
+(−h1)+, 1

2
−(h1)+](f1) I[−1

2
, 1
2 ]
(f2)

×
I{1,...,N−1}(k)

N − 1
(10)

where for any real parameter, (x)
+ ∆

= max (x, 0).
On the other hand, from the i.i.d. assumption we have

p (y|θ) ∆
= p (y|f1,f2,τ=k)=

k∏
n=1

p
(
y (n)|f1

) N∏
n=k+1

p
(
y (n)|f2

)
(11)



and p (y|θ+h1) is modified accordingly. This leads to:√
p(y|θ+h1) p(y|θ) =

1

(πσ2)N
exp

{
− 1

σ2
(y−ms)

H(y−ms)

}

× exp

−
(
N−Re

(
sk(f1+h1, f2)

Hsk(f1, f2)
))

2σ2

 (12)

where ms = 1
2

(
sk (f1 + h1, f2) + sk (f1, f2)

)
. Then, the

integration over Ω with respect to y gives:∫
Ω

√
p (y|θ+h1) p (y|θ)dy =

exp

−
(
N−Re

(
sk(f1+h1, f2)

Hsk(f1, f2)
))

2σ2

 (13)

More explicitely, since

sk(f1+h1,f2)
Hsk(f1,f2)=

k∑
n=1

e−i2πh1n +N − k

= e−iπh1(k+1) sin (πh1k)

sin (πh1)
+N−k, (14)

the left side of (13) does not depend on f1 and f2. Finally, by
substituting (13) and (10) into (8) and by integrating out f1

and f2 and summing over N, we obtain

ζ(h1,0)=
1−|h1|
N − 1

N−1∑
k=1

exp

{
− 1

4σ2

(
2k+1− sin(πh1(2k + 1))

sin(πh1)

)}
(15)

which concludes the derivation of the denominator terms of
(6). For the numerator, first, we notice that

ζ (h1,h1) = ζ (−h1,−h1) =

∫
Θ

∫
Ω

p (y,θ ± h1) dydθ = 1. (16)

The other terms of the numerator of (6) can be derived as
follows:

ζ (h1,−h1) = ζ (−h1,h1) = ζ (2h1,0) (17)

using a proper variable change. Finally, by substituting (16)
and (17) into (6), we obtain

G1,1 =
2
(
1− ζ (2h1,0)

)
ζ2 (h1,0)

(18)

where ζ (h1,0) and ζ (2h1,0) are given according to (15).
Following the same methodology, we obtain

G2,2 =
2
(
1− ζ (2h2,0)

)
ζ2 (h2,0)

(19)

in which

ζ (h2,0) =
1− |h2|
N − 1

N−1∑
k=1

exp

{
− 1

2σ2

(
N − k −

cos
(
πh2 (N + k + 1)

) sin (πh2 (N − k))
sin (πh2)

)}
. (20)

3.2.2. Derivation of the diagonal term G3,3

First, (10) becomes√
p (θ + h3) p (θ) = I[− 1

2
, 1
2 ]

(f1) I[− 1
2
, 1
2 ]

(f2)

×
I{1+(−h3)+,...,N−1−(h3)+} (k)

N − 1
. (21)

Furthermore, similar manipulations to those in (11), (12),
and (14) lead to∫

Ω

√
p(y|θ + h3) p(y|θ)dy =

exp

− 1

2σ2

(
|h3| −

k+|h3|∑
n=k+1

cos
(
2π (f2 − f1)n

)) (22)

The expression of ζ (h3,0) is then obtained by integrating out
f1 and f2 and summing over N:

ζ (h3,0) =
exp

{
− |h3|

2σ2

}
(N − 1)

∫ 1
2

− 1
2

∫ 1
2

− 1
2

N−1−|h3|∑
k=1

exp

 1

2σ2

×
k+|h3|∑
n=k+1

cos
(
2π (f2 − f1)n

)df1df2 (23)

which can be efficiently numerically evaluated [19]. Finally,
in the same manner as in (18) and (19), we obtain

G3,3 =
2
(
1− ζ (2h3,0)

)
ζ2 (h3,0)

(24)

whose explicit expression is deduced from (23).

3.2.3. Cross-terms derivation

Similar considerations to those in subsection 3.2.1 lead to

ζ (h1,h2) =
(1− |h1|) (1− |h2|)

N − 1

×
N−1∑
k=1

exp

{
− 1

2σ2

(
N−cos

(
πh1 (k + 1)

) sin(πh1k)

sin(πh1)
−

cos
(
πh2 (N + k + 1)

) sin (πh2 (N − k))
sin (πh2)

)}
(25)

which directly implies, by (6), that G1,2 = G2,1 = 0.
So far, two terms remain to be derived: G1,3 and G2,3.

They are actually very similar, so details are given only for
the former. The denominator terms of G1,3 are given by (15)
and (23). We then derive ζ (h1,h3) and we obtain

ζ (h1,h3) =

∫
Θ

[∫
Ω

√
p (y|θ + h1 − h3) p (y|θ)dy

]
×
√
p (θ + h1 − h3) p (θ)dθ (26)

and similarly as in (10) and (21), we have√
p (θ + h1 − h3) p (θ) = I[− 1

2
+(−h1)+, 1

2
−(h1)+] (f1)

× I[− 1
2
, 1
2 ]

(f2)
I{1+(h3)+,...,N−1−(−h3)+} (k)

N − 1
. (27)



Finally, since∫
Ω

√
p (y|θ + h1 − h3) p (y|θ)dy =

exp

− 1

2σ2

[
k+|h3|−

k∑
n=1

cos (2πh1n)−

k+|h3|∑
n=k+1

cos

(
2π
(
f2−f1−h1IR∗−(h3)

)
n

)] (28)

where R∗−
∆
= ]−∞, 0[ , we are now able to write the ex-

pression of ζ (h1,h3) by substituting (27) and (28) into (26),
which leads to

ζ (h1,h3) =
1

N − 1
exp

{
−|h3|
2σ2

}
×

∫ 1
2

− 1
2

∫ 1
2
−(h1)+

− 1
2

+(−h1)+

N−1−|h3|∑
k=1

exp

− 1

2σ2

[
k−

k∑
n=1

cos (2πh1n)−

k+|h3|∑
n=k+1

cos

(
2π
(
f2−f1−h1IR∗−(h3)

)
n

)] df1df2 , (29)

and from which the expressions of ζ (−h1,−h3), ζ (h1,−h3),
and ζ (−h1,h3) are obtained. Then one can deduce G1,3

from (6). Notice that generally, G1,3 6= 0.
Finally, the expression of ζ (h2,h3) is obtained in the

same way as that of ζ (h1,h3) as

ζ (h2,h3) =
1

N − 1
exp

{
− N

2σ2

}
×

∫ 1
2
−(h2)+

− 1
2

+(−h2)+

∫ 1
2

− 1
2

N−1−|h3|∑
k=1

exp

 1

2σ2

[
k +

N∑
n=k+|h3|+1

cos (2πh2n)+

k+|h3|∑
n=k+1

cos

(
2π
(
f2+h2IR∗+(h3)−f1

)
n

)] df1df2 , (30)

where R∗+
∆
= ]0,+∞[ .

As for G1,3, the expression of G2,3 arises from (20), (23)
and (30), that one properly substitutes into (6).

4. NUMERICAL RESULTS

In this section, we present the simulation results comparing
the empirical global mean square errors (GMSE) of the max-
imum a posteriori (MAP) estimator of (f1, f2, τ) with the
WWB derived above, for model (2) with N = 20. Notice
that the maximization with respect to the hq , q = 1, 2, 3 is
performed by maximizing the trace of HG−1HT .

In Figs. 1 and 2, we perform 1000 Monte-Carlo simula-
tions. These figures reveals that, as expected, the WWB in
good agreement with the behavior of the MAP estimator and
remains reasonably tight. Indeed, Fig. 1 which represents the
GMSE of the MAP and WWB for the change-point τ shows
a gap of approximately 1 sample at low and high SNR.
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Fig. 1. GMSE of the MAP estimator (dashed line) and WWB (solid
line) for the estimation of the change-point τ (in magenta), with
N = 20 snapshots.
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Fig. 2. GMSE of the MAP estimator (dashed lines) and WWB
(solid lines) for the estimation of the frequencies f1 (in blue) and
f2 (in red), with N = 20 snapshots.

5. CONCLUSION

In this communication, we derived the Weiss-Weinstein
bound (WWB) in the case of an abruptly changing frequency.
Numerical simulations reveal that the WWB with respect to
the frequencies and the change-point remains reasonably tight
regarding to the global mean square error of the maximum a
posteriori estimator.
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