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(3) Université Paris-Sud/LSS, 3 Rue Joliot-Curie, Gif-sur-Yvette, France (renaux@lss.supelec.fr)
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ABSTRACT

In this paper, non standard deterministic parameters estimation is
considered, i.e. the situation where the probability density func-
tion (p.d.f.) parameterized by unknown deterministic parameters
results from the marginalization of a joint p.d.f. depending on ad-
ditional random variables. Unfortunately, in the general case, this
marginalization is mathematically intractable, which prevents from
using the known deterministic lower bounds on the mean-squared-
error (MSE). However an embedding mechanism allows to transpose
all the known lowers bounds into modified lower bounds fitted with
non-standard deterministic estimation, encompassing the modified
Cramér-Rao / Bhattacharyya bounds and hybrid lower bounds.

Index Terms— Deterministic parameter estimation, estimation
error lower bounds

1. INTRODUCTION

As introduced in [1, p53], a model of the general estimation prob-
lem has the following four components: 1) a parameter space Θ, 2)
an observation space Ω, 3) a probabilistic mapping from vector pa-
rameters space Θ to observation space Ω, that is the probability law
that governs the effect of a vector parameters value on the observa-
tion and, 4) an estimation rule. In many estimation problems, the
probabilistic mapping results from a two steps probabilistic mecha-
nism, illustrated by the observation model: x = b (ω) s + n,where
x is the vector of observations of size M , s is a complex ampli-
tude, b ( ) is a vector of M parametric functions depending on a
parameter ω, n are known complex circular noises independent of
s. In a first step, the centred random amplitude s is drawn accord-
ing to a p.d.f. conditioned on its mean power σ2

s: p
(
s|σ2

s

)
. In a

second step, the signal of interest is embedded in noise: s → x =
b (ω) s → x = b (ω) s + n, leading to the probabilistic mapping
θT =

(
σ2
s, ω
)
∈ Θ → x ∈ Ω characterized by:

p (x|θ) =
∫
p (x, s|θ) ds, p (x, s|θ) = p (x|s;ω) p

(
s|σ2

s

)
(1a)

As illustrated in (1a), in probability theory, the distribution of the
marginal variables (x) is obtained by marginalizing over the distri-
bution of the variables being discarded (s), and the discarded vari-
ables are said to have been marginalized out. It is not said that the
discarded variables should be regarded as unknown (nuisance) ran-
dom parameters which estimation could be of interest. Therefore,
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deterministic estimation problems can be divided into two subsets:
the subset of ”standard” problems for which a closed-form expres-
sion of p (x|θ) is available, and the subset of ”non standard” prob-
lems for which only an integral form of p (x|θ) is available. For
a long time, the open literature on lower bounds on the MSE has
remained focused on standard estimation [2]-[16]. It is likely that
the first attempt to tackle the ”non standard” case was addressed by
Miller and Chang [17] who introduced a so-called modified Cramér-
Rao bound. For their particular problem of interest, it made sense to
regard the marginalization (1a) as a probabilistic modelling of the es-
timation of unknown parameters (θ) from noisy measurements (x)
incorporating random nuisance parameters (s). Unfortunately [17]
does not address the problem of finding a lower bound on the MSE of
a locally-best unbiased estimator as defined by Barankin in its sem-
inal work [7], generalizing the earlier works of Fréchet, Darmois,
Cramér, Rao and Battacharayya [2]-[6]. However, the setting intro-
duced in [17] has been replicated and repeated in [18][19] in order to
compute a ”true” modified CRB (MCRB) for unbiased estimates ex-
ploiting (1a). As a consequence, the MCRB introduced in [18][19]
is the first1 lower bound (but not the only one [22]) for unbiased es-
timates in non-standard estimation and has been proven to be useful
in many applications [18]-[29]

As a contribution, we propose a simple approach to derive lower
bounds on the MSE for unbiased estimates in non-standard estima-
tion exploiting the general form of the marginalization formula (1a):

p (x|θ) =
∫

Πθr|x

p (x,θr|θ) dθr, x ∈ Ω, θr ∈ Πθr , θ ∈ Θ (1b)

without any reference to extraneous or nuisance random parame-
ters. The main result is that the lack of a closed-form for marginal
p.d.f. p (x|θ) compels to embed2 the initial observation space Ω into
Ω × Πθr and to consider estimation rules from Ω × Πθr , leading
to the derivation of lower bounds of unbiased estimator θ̂ (x,θr) of
θ. This embedding mechanism allows to transpose all the lowers
bounds derived in standard estimation (briefly overviewed in section
2) into modified lower bounds fitted with non-standard estimation
(see section 3). Interestingly enough, tighter modified lower bounds
can be easily obtained (see §3.1 and §3.2) which appear to be the ”de-
terministic part” of hybrid lower bounds (see §3.3), that is the part of
the hybrid lower bounds bounding the deterministic parameters, but,
without any regularity condition on the (nuisance) random vector
estimates. Last, the proposed rationale not only proves straightfor-
wardly the looseness of any modified lower bound (including thus

1Note that CRB’s for synchronization parameter estimation that have been
derived earlier in [20][21] are in fact MCRBs.

2One space z is embedded in another space Υ when the properties of Υ
restricted to z are the same as the properties of z.



the hybrid lower bounds) but also provides a very general ”tightness
condition” required to obtain a modified lower bound as tight as the
standard lower bound (see §3.4). The results introduced in the fol-
lowing are also of interest if a closed-form of p (x|θ) does exist but
the resulting expression is intractable to derive lower bounds.
For the sake of simplicity we will focus on the estimation of a single
unknown real parameter θ, although the results are easily extended
to the estimation of multiple functions of multiple parameters [30].

2. LOWER BOUNDS FOR STANDARD ESTIMATION

Let L2
(
CM
)

be the real Euclidean space of square integrable real-
valued functions over the domain CM . In the search for a lower
bound on the MSE of unbiased estimators, two fundamental prop-
erties have been introduced by Barankin [7]. First, the MSE of a
particular estimator θ̂0 , θ̂0 (x) ∈ L2

(
CM
)

of θ0, where θ0 is a
selected value of the parameter θ, can be formulated as:

MSEθ0

[
θ̂0
]
=
∥∥∥θ̂0 (x)− θ0

∥∥∥2
θ0
,

⟨g (x) | h (x)⟩θ = Ex|θ [g (x)h (x)] =
∫
CM

g (x)h (x) p (x|θ) dx.

Second, an unbiased estimator θ̂0 (x) should be uniformly unbiased:

∀θ ∈ Θ : Ex|θ

[
θ̂0 (x)

]
=
∫
CM

θ̂0 (x) p (x|θ) dx = θ. (2a)

If Ω(θ) =
{
x ∈ CM | p (x|θ) > 0

}
, Ω ⊂ CM , i.e. the support

of p (x|θ) does not depend on θ, then (2a) can be recasted as:

∀θ ∈ Θ : Ex|θ0
[(
θ̂0 (x)− θ0

)
υθ0 (x; θ)

]
= θ − θ0, (2b)

where υθ0 (x; θ) =
p(x|θ)
p(x|θ0)

denotes the Likelihood Ratio (LR). As

a consequence, the locally-best (at θ0) unbiased estimator in L2 (Ω)
is the solution of a norm minimization under linear constraints:

min

{∥∥∥θ̂0 (x)− θ0
∥∥∥2
θ0

}
under⟨

θ̂0 (x)− θ0 | υθ0 (x; θ)
⟩
θ0

= θ − θ0,∀θ ∈ Θ.
(3)

Unfortunately, as recalled hereinafter, if Θ contains a continuous
subset of R, then (3) leads to an integral equation (7) with no an-
alytical solution in general. Therefore, since the work of Barankin
[7], many studies quoted in [30]-[32] have been dedicated to the
derivation of “computable” lower bounds approximating the MSE
of the locally-best unbiased estimator (BB). All these approxima-
tions derive from sets of discrete or integral linear transform of the
unbiasedness constraint (2b) and can be obtained using the following
norm minimization lemma. Let U be an Euclidean vector space on
R which has a scalar product ⟨ | ⟩. Let (c1, . . . , cK) be a free family
of K vectors of U and v ∈ RK . The problem of the minimization of
∥u∥2 under the K linear constraints ⟨u | ck⟩ = vk, k ∈ [1,K] then
has the solution:

min
{
∥u∥2

}
= vTG−1v for uopt =

K∑
k=1

αkck

α = G−1v, Gn,k = ⟨ck | cn⟩
(4)

Indeed, let θN =
(
θ1, . . . , θN

)T ∈ ΘN be a vector of N se-
lected values of the parameter θ (aka test points), υθ0

(
x;θN

)
=

(
υθ0

(
x; θ1

)
, . . . , υθ0

(
x; θN

))T
be the vector of LR associated to

θN , and ξ (θ) = θ − θ0 and ξN =
(
ξ
(
θ1
)
, . . . , ξ

(
θN
))T

. Then,

any unbiased estimator θ̂0 (x) verifying (2b) must comply with

Ex|θ0
[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
= ξN , (5a)

and with any subsequent linear transformation of (5a). Thus, any
given set ofK (K ≤ N) independent linear transformations of (5a):

Ex|θ0
[(
θ̂0 (x)− θ0

)
hT
k υθ0

(
x;θN

)]
= hT

k ξ
N , (5b)

hk ∈ RN , k ∈ [1,K], provides with a lower bound on the MSE (4):

MSEθ0

[
θ̂0
]
≥
(
ξN
)T

R†
HK
ξN , (5c)

where R†
HK

= HK

(
HT

KRυ
θ0
HK

)−1
HT

K , HK = [h1 . . . hK ]

and
(
Rυ

θ0

)
n,m

= Ex|θ0 [υθ0 (x; θ
m) υθ0 (x; θ

n)]. The BB is ob-
tained by taking the supremum of (5c) over all the existing degrees
of freedom

(
N,θN ,K,HK

)
. All known bounds on the MSE deriv-

ing from the BB can be obtained with the appropriate instantiations
of (5c). For example, the general class introduced lately in [31] is
the limiting case of (5b-5c) [34] where N → ∞ and θN uniformly
samples Θ, leading to :

Ex|θ0
[(
θ̂0 (x)− θ0

)
η (x; τ)

]
= Γh (τ) , (6)

η (x; τ) =
∫
Θ

h (τ , θ) υθ0 (x; θ) dθ, Γh (τ) =
∫
Θ

h (τ , θ) ξ (θ) dθ,

where each hk =
(
h
(
τk, θ

1
)
, . . . , h

(
τk, θ

N
))T

is the vector of
samples of a parametric function h (τ , θ) , τ ∈ Λ ⊂ R. Then, the
limiting case where K → ∞ and the set {τk}k∈[1,K] uniformly
samples Λ yields the integral form of (5c) released in [31]:∣∣∣∣∣∣∣∣∣∣

MSEθ0

[
θ̂0lmvu (x)

]
=
∫
Λ

Γh (τ)β (τ) dτ

θ̂0lmvu (x)− θ0 =
∫
Λ

η (x; τ)β (τ) dτ∫
Λ

Kh (τ ′, τ)β (τ) dτ = Γh (τ ′)

, (7)

Kh (τ , τ ′) = Ex|θ0 [η (x; τ) η (x; τ
′)]

=
∫∫
Θ2

h (τ , θ)Rυ
θ0

(θ, θ′)h (τ ′, θ′) dθdθ′,

Rυ
θ0

(θ, θ′) = Ex|θ0

[
p(x|θ)
p(x|θ0)

p(x|θ′)
p(x|θ0)

]
.

As mentioned above, in most practical cases, it is impossible to find
an analytical solution of (7) to obtain an explicit form of the BB,
which somewhat limits its interest. Nevertheless this formalism al-
lows to use discrete (5b) or integral (6) linear transforms of the LR,
possibly non-invertible, possibly optimized for a set of p.d.f. (such
as the Fourier transform in [31]) to get a tight BB approximation.

3. LOWER BOUNDS FOR NON-STANDARD ESTIMATION

Non-standard deterministic estimation addresses the case where
the conditional p.d.f. p (x|θ) results from the marginalization of
a conditional joint p.d.f. p (x,θr|θ) (1b) where Πθr|x (θ) ={
θr ∈ RPr | p (x,θr|θ) > 0

}
is the support of p (θr|x, θ). The

results introduced in the following are of interest if a closed-form
of p (x|θ) does not exist or if a closed-form of p (x|θ) does exist



but the resulting expression is intractable to derive lower bounds.
If the supports of p (x,θr|θ) and p (θr|x, θ) are independent of
θ: ∆(θ) =

{
(x,θr) ∈ CM × RPr | p (x,θr|θ) > 0

}
, ∆ and

Πθr|x (θ) , Πθr|x, then:

p (x|θ) =
∫

Πθr|x

p (x,θr|θ) dθr,

Ex,θr|θ [g (x,θr)] = Ex,θr|θ0 [g (x,θr) υθ0 (x,θr; θ)] ,

υθ0 (x,θr; θ) =
p(x,θr|θ)
p(x,θr|θ0)

,

and (5a) can be reformulated as, ∀n ∈ [1, N ]:

θn − θ0 = Eθ0

[(
θ̂0 (x)− θ0

)
υθ0 (x; θ

n)
]

=
∫
Ω

(
θ̂0 (x)− θ0

)
p (x|θn) dx

=
∫∫
∆

(
θ̂0 (x)− θ0

)
p (x,θr|θn) dθrdx

θn − θ0 = Ex,θr|θ0
[(
θ̂0 (x)− θ0

)
υθ0 (x,θr; θ

n)
]

that is, ifυT
θ0

(
x,θr;θ

N
)
=
(
υθ0

(
x,θr; θ

1
)
, . . . , υθ0

(
x,θr; θ

N
))

:

ξN = Eθ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
= Ex,θr|θ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr;θ

N
)]
.

(8)

Since Ex|θ0

[(
θ̂0 (x)− θ0

)2]
= Ex,θr|θ0

[(
θ̂0 (x)− θ0

)2]
,

min

{
Ex|θ0

[(
θ̂0 (x)− θ0

)2]}
under

ξN = Eθ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)] (9a)

is equivalent to:

min

{
Ex,θr|θ0

[(
θ̂0 (x)− θ0

)2]}
under

ξN = Ex,θr|θ0
[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr;θ

N
)] (9b)

Note that the equivalence between (9a) and (9b) holds only in
L2 (Ω). Unfortunately the minimum norm lemma (4) provides the
solution of (9b) in L2 (∆), that is actually the solution of:

min

{
Ex,θr|θ0

[(
θ̂0 (x,θr)− θ0

)2]}
under

ξN = Ex,θr|θ0
[(
θ̂0 (x,θr)− θ0

)
υθ0

(
x,θr;θ

N
)] (9c)

leading to a looser lower bound, since L2 (Ω) ⊂ L2 (∆). The re-
lationship between (9a-9c) shows that any approximation of the BB
deriving from sets of discrete or integral linear transform of the un-
biasedness constraint (5b)(6) has an analog formulation in non stan-
dard estimation obtained by substitutingEx,θr|θ0 [ ] forEx|θ0 [ ] and
υθ0 (x,θr; θ) for υθ0 (x; θ). Actually, this is obtained simply by
substituting p (x,θr|θ) for p (x|θ) in any lower bound for standard
estimation. In fact, we have simply performed an embedding of
L2 (Ω) into L2 (∆) for the search of the locally-best unbiased es-
timator. From this perspective, it seems appropriate to refer to these
lower bounds as modified lower bounds (MLBs) as it has been pro-
posed initially in [18][19] for the CRB in the restricted case where
p (θr|θ) , p (θr). The result introduced here is general and holds
whatever the p.d.f. of the random parameters depends or does not

depend on the deterministic parameters. In the light of the above,
the MCRB is obtained from the CRB:

Ex|θ

[(
∂ ln p (x|θ)

∂θ

)2
]−1

→ Ex,θr|θ

[(
∂ ln p (x,θr|θ)

∂θ

)2
]−1

and for instance, the MBB is obtained from (6) and (7):

MBB =
∫
Λ

Γh (τ)β (τ) dτ,
∫
Λ

Kh (τ ′, τ)β (τ) dτ = Γh (τ ′) ,

η (x,θr; τ) =
∫
Θ

h (τ , θ) υθ0 (x,θr; θ) dθ, Γh (τ) =
∫
Θ

h (τ , θ) ξ (θ) dθ,

Kh (τ , τ ′) = Ex,θr|θ0 [η (x,θr; τ) η (x,θr; τ
′)]

=
∫∫
Θ2

h (τ , θ)Rυ
θ0

(θ, θ′)h (τ ′, θ′) dθdθ′,

Rυ
θ0

(θ, θ′) = Ex,θr|θ0

[
p(x,θr|θ)
p(x,θr|θ0)

p(x,θr|θ′)
p(x,θr|θ0)

]
3.1. A class of tighter modified lower bounds

Let 1A (θr) denote the indicator function of subsetA of RPr . Then:

p (x|θ) =
∫

Πθr|x

p (x,θr|θ) dθr =
∫

RPr

p (x,θr|θ) 1Πθr|x (θr) dθr,

what can be rewritten as (after change of variables θr = θ′r + hr):

p (x|θ) =
∫

RPr

p (x,θr + hr|θ) 1Πθr|x (θr + hr) dθr.

Therefore for any hr such that:

1Πθr|x (θr + hr) = 1Πθr|x (θr) , ∀θr ∈ RPr , (10)

then p (x|θ) =
∫

Πθr|x

p (x,θr + hr|θ) dθr and, ∀n ∈ [1, N ]:

θn − θ0 =
∫
Ω

(
θ̂0 (x)− θ0

)
p (x|θ) dx

=
∫
Ω

(
θ̂0 (x)− θ0

) ∫
Πθr|x

p (x,θr + hr|θn) dθrdx

that is:

ξN = Eθ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
ξN = Ex,θr|θ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr + hr;θ

N
)]
.

The identity above means that in L2 (Ω) the two subsets of N con-
straints are equivalent system of linear equations yielding the same
vector subspace of L2 (Ω): span

(
υθ0

(
x; θ1

)
, . . . , υθ0

(
x; θN

))
.

Therefore in L2 (Ω) any set of N ×K constraints of the form:

ξN = Ex,θr|θ0
[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr + hk

r ;θ
N
)]
, (11)

where
{
h1
r, . . . ,h

K
r

}
satisfy (10), is equivalent to the set of N con-

straints (8). Fortunately this result does not hold a priori in L2 (∆)
where the N × K constraints (11) are expected to be independent
(not necessarily true in the general case). The effect of adding con-
straints is to restrict the class of viable estimators θ̂0 (x,θr) and
therefore to possibly increase the minimum norm obtained from (4):

min

{
Ex,θr|θ0

[(
θ̂0 (x,θr)− θ0

)2]}
under k ≤ K,

ξN = Ex,θr|θ0
[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr + hk

r ;θ
N
)] (12)



which remains smaller (or equal) than the minimum norm obtained
on L2 (Ω) given by (9a). Note that the regularity condition (10) only
imposes on 1Πθr|x (θr), x ∈ Ω, to be of the following form:

1Πθr|x (θr) =

∣∣∣∣∣ 0 if
∑

hr∈zx

∑
l∈Z

1Π0
θr|x

(θr + lhr) = 0,

1, otherwise,
(13)

where zx and Π0
θr|x are subsets of RPr . A typical example is the

tighter MCRB obtained for the following set of constraints:

v = dθ
(

0
e1

)
= Ex,θr|θ0

[(
θ̂0 (x)− θ0

)
c (x,θr)

]
,

c (x,θr)
T =

(
υθ0

(
x,θr, θ

0
)
, υθ0

(
x,θr, θ

0 + dθ
)
,

υθ0
(
x,θr + u1h

1
r, θ

0
)
, . . . , υθ0

(
x,θr + uPrh

Pr
r , θ0

))
where e1 = (1, 0, . . . , 0)T and uk is the kth column of the iden-
tity matrix IPr . If dθ, h1

r, . . . , h
Pr
r → 0, which imposes that (13)

reduces to Πθr|x = RPr , the lower bound obtained from (4) is:

MCRBθ0 = eT
1 F
(
θ0
)−1

e1,

F (θ) = Ex,θr|θ

[
∂ ln p(x,θr|θ)
∂(θ,θT

r )
T

∂ ln p(x,θr|θ)
∂(θ,θT

r )

]
(14)

Since F (θ) =

[
fθ (θ) fTθr,θ (θ)

fθr,θ (θ) Fθr (θ)

]
, therefore:

MCRBθ0 = 1

fθ(θ0)−fT
θr,θ(θ0)F

−1
θr

(θ0)fθ,θr (θ0)
≥

1

fθ(θ0)
=MCRBθ0

(15)

3.2. Another class of tighter modified lower bounds

Any real-valued function ψ (x,θr; θ) which support is ∆ satisfying:∫
Πθr|x

ψ (x,θr; θ) dθr = 0, (16)

is a Bayesian lower bound-generating function [35], such as:

ψhr
s (x,θr; θ) =

(
p (θr + hr|x, θ)
p (θr|x, θ)

)m

−
(
p (θr − hr|x, θ)
p (θr|x, θ)

)1−m

(17)
wherem ∈]0, 1[, yielding the Weiss-Weinstein bound. Letψ (x,θr; θ)
be a vector of L independent functions satisfying (16). Then:

Ex|θ0

[(
θ̂0 (x)− θ0

υθ0
(
x;θN

))ψ (x,θr; θ0)T] = 0, (18)

which means that [33, Lemma 2] the addition of the set of L con-
straints Ex|θ0

[(
θ̂0 (x)− θ0

)
ψ
(
x,θr; θ

0
)]

= 0 to any linear
transformation of (5a) does not change the associated lower bound
(5c). Fortunately, once again, this result does not hold a priori in
L2 (∆) for most choices ofψ (x,θr; θ). Therefore one can possibly
increases the minimum norm obtained from (9c) by computing:

min

{
Ex,θr|θ0

[(
θ̂0 (x,θr)− θ0

)2]}
under

ξN = Ex,θr|θ0
[(
θ̂0 (x,θr)− θ0

)
υθ0

(
x,θr;θ

N
)]

0 = Ex,θr|θ0
[(
θ̂0 (x,θr)− θ0

)
ψ
(
x,θr; θ

0
)] (19)

which remains smaller (or equal) than the minimum norm obtained
on L2 (Ω) given by (9a). First note that it is generally not possible

to compare (12) with (19) since they derive from different subset of
constraints. Second, (19) can be used with joint p.d.f. p (x,θr|θ)
which does not satisfy the regularity condition (13) since functions
(17) are essentially free of regularity conditions [35]. Another tighter
MCRB is obtained as the limiting case (dθ → 0) resulting from:

v = dθ
(

0
e1

)
= Ex,θr|θ0

[(
θ̂0 (x)− θ0

)
c (x,θr)

]
,

c (x,θr)
T =

(
υθ0

(
x,θr, θ

0 + dθ
)
, υθ0

(
x,θr, θ

0
)
,ψ
(
x,θr; θ

0
)T)

,

MCRBθ0 = eT
1 Ex,θr|θ0

( ∂ ln p(x,θr|θ)
∂θ

ψ (x,θr; θ)

)(
∂ ln p(x,θr|θ)

∂θ

ψ (x,θr; θ)

)T
−1

e1

3.3. The relationship with hybrid lower bounds

The tightest modified lower bounds are obtained by combination of
constraints (12)(19) as the solution of:

min

{
Ex,θr|θ0

[(
θ̂0 (x,θr)− θ0

)2]}
under k ≤ K,

ξN = Ex,θr|θ0
[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr + hk

r ;θ
N
)]
,

0 = Ex,θr|θ0
[(
θ̂0 (x,θr)− θ0

)
ψ
(
x,θr; θ

0
)]
,

(20)

where ψ
(
x,θr; θ

0
)

satisfies (16). First, they can be applied only to
problems where the support Πθr|x satisfies (13). Therefore, if the
existence of a MCRB of the form (14) is required, then necessar-
ily Πθr|x = RPr . Second, the modified lower bound obtained is
lower than or equal to (9a). As an example, let us consider the sit-
uation where Πθr|x = RPr and let Λθ = {h ∈ R | θ + h ∈ Θ}
and Λθr =

{
hr ∈ RPr | θr + hr ∈ Πθr

}
. Then if we choose

ψ (x,θr; θ)l = ψ
hl
r

ml (x,θr; θ) (17), 1 ≤ l ≤ L, and a set of
test points of the form

(
θ0, θ0 + h1, . . . , θ0 + hN

)
, then the tightest

modified lower bound solution of (20) is given by:

MLB
(
θ0
)
= sup

{hn}∈Λ
θ0

,{hl
r}∈Λθr ,{ml}∈]0,1[

{
vTG−1v

}
(21)

where v =
(
h1, . . . , hN , 0, . . . , 0

)T
and G is given by V (15-19)

in [36]. Obviously, the MLB
(
θ0
)

(21) is the special case of the
HMSSWB [36] where the vector of hybrid parameters reduce to the
deterministic parameters (no random parameters). As shown in [36],
the HMSSWB encompasses the hybrid lower bounds based on linear
transformation on the centered likelihood-ratio (CLR) function [37]
which is the cornerstone to generate a large class of hybrid bounds
including any existing approximation of the MBB.

3.4. On the tightness of modified lower bounds

The ”tightness condition” required to obtain a modified lower bound
as tight as the standard lower bound is simply: it is necessary, and
sufficient, that the estimator solution of the norm minimization under
linear constraints (4)(12)(19)(20) belongs to L2 (Ω). For example, if
we consider the MCRBθ0 (14) then the tightness condition is (4):

∂ ln p(x,θr|θ)
∂θ

− fθr,θ (θ)F
−1
θr

(θ) ∂ ln p(x,θr|θ)
∂θr

∈ L2 (Ω)

⇔ ∂ ln p(x,θr|θ)
∂θ∂θT

r
− fθr,θ (θ)F

−1
θr

(θ) ∂ ln p(x,θr|θ)
∂θr∂θT

r
= 0

which has been introduced in [38, (34)] at the expense of a quite
complex proof.
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