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ABSTRACT

In many deterministic estimation problems, the probability density
function (p.d.f.) parameterized by unknown deterministic parame-
ters results from the marginalization of a joint p.d.f. depending on
additional random variables. Unfortunately, this marginalization is
often mathematically intractable, which prevents from using stan-
dard maximum likelihood estimators (MLEs) or any standard lower
bound on their mean squared error (MSE). To circumvent this prob-
lem, the use of joint MLEs of deterministic and random parameters
are proposed as being a substitute. It is shown that, regarding the
deterministic parameters: 1) the joint MLEs provide generally sub-
optimal estimates in any asymptotic regions of operation yielding
unbiased efficient estimates, 2) any representative of the two general
classes of lower bounds, respectively the Small-Error bounds and
the Large-Error bounds, has a ”non-standard” version lower bound-
ing the MSE of the deterministic parameters estimate.

Index Terms— Deterministic parameter estimation, maximum
likelihood estimators, estimation error lower bounds

1. INTRODUCTION

As introduced in [1, p53], a model of the general deterministic esti-
mation problem has the following four components: 1) a parameter
space Θ consisting of a set of parameter vectors θ, Θ ⊂ RP , 2)
an observation space Ω consisting of a set of observation vectors x,
Ω ⊂ CM , 3) a probabilistic mapping from Θ to Ω, that is the prob-
ability law that governs the effect of a vector parameters value θ on
the observation x and, 4) an estimation rule θ̂ (x), that is the map-
ping of Ω into estimates. Actually, in many estimation problems, the
probabilistic mapping results from a two steps probabilistic mecha-
nism, leading to a probability density function (p.d.f.) of the form:

p (x|θ) =
∫
p (x|θr,θ) p (θr|θ) dθr, θr ∈ RPr , (1)

where θr is a random vector, and p (x|θr,θ) and p (θr|θ) are
known. Classical examples are the reception of M samples from
a signal source either by a radar, a sonar or a telecom system in
the presence of Gaussian or spherically invariant thermal noise [2]:
x = s (θs) a + n (θn), θT =

(
θTs ,θ

T
n

)
, θr , a. In the case of

an active radar [1][3], θr , a are the complex amplitudes of the
received signals backscattered by Pr targets which may fluctuate
according to a given (or measured) p.d.f. such as the Swerling laws
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[4]. Therefore, as recalled in [5], deterministic estimation problems
can be divided into two subsets: the subset of ”standard” estimation
problems for which a closed-form expression of p (x|θ) is available,
and the subset of ”non-standard” estimation problems for which only
an integral form of p (x|θ) (1) is available. Since in non-standard
estimation, maximum likelihood estimators (MLEs) (2a) can be no
longer derived, the use of joint MLEs of θ and θr (2b) are proposed
as being a substitute:

θ̂ML (x) = arg max
θ∈Θ
{p (x|θ)} , (2a){

θ̂ (x) , θ̂r (x)
}

= arg max
θ∈Θ,θr∈Πθr

{p (x|θr,θ)} , (2b)

where Πθr is the support of p (θr|x,θ). It is a sensible solution in
the search for a realizable estimator of θ. Indeed, the widespread use
of MLEs originates from the fact that, under reasonably general con-
ditions on the observation model [7][8], the MLEs are, in the limit of
large sample support, asymptotically unbiased, Gaussian distributed
and efficient. If the observation model is Gaussian, some additional
asymptotic regions of operation yielding unbiased Gaussian and ef-
ficient MLEs have also been identified at finite sample support [9]-
[13]. Historically, the open literature on the estimation accuracy of
MLEs in terms of mean squared error (MSE), including the asso-
ciated lower bounds (LBs), has remained focused on standard de-
terministic estimation (2a) [7][14]-[33]. It is the reason why θ̂ (x)

and θ̂r (x) (2b) are referred to as ”non-standard MLEs” (NSMLEs).
Interestingly enough, despite its frequent occurrence in practical es-
timation problems, the study of NSMLEs has received little atten-
tion and the contributions have been limited to the derivation of two
representatives of the Small-Error bounds, namely the Cramér-Rao
bound (CRB) [6][34] and the Battacharayya bound (BaB) [35].

The aim of the present communication is to complete this ini-
tial characterization of estimation accuracy of NSMLEs. First, the
intuitive idea [6][34][35] that NSMLEs are generally suboptimal es-
timates (in any asymptotic region of operation yielding unbiased effi-
cient estimates) is rigorously established. Therefore, it is of interest
to investigate the suboptimality of the NSMLEs, which can be, in
some extent, quantified by lower bounds (LBs) derivation and com-
parison. Thus, as a second contribution, we show that any represen-
tative of the two general classes of LBs on the MSE, respectively the
Small-Error bounds and the Large-Error bounds, has a non-standard
version lower bounding the MSE of NSMLEs. Small-Error bounds
are not able to handle the threshold phenomena, whereas it is re-
vealed by Large-Error bounds that can be used to predict the thresh-
old value. Last, some of the results introduced are exemplified by a
new look at the well known Gaussian complex observation models.



We focus on the scalar case, i.e. θ , θ, although the results are
easily extended to the estimation of a vector of parameters [30][31].

2. RELATION TO PRIOR WORK

Despite its frequent occurrence in estimation problems, the study
of NSMLEs (2b) has received little attention and the contributions
have been limited to the derivation of the appropriate CRB [6][34]
and BaB [35]. Our contribution is two-fold: we show that 1) NSM-
LEs are generally suboptimal estimates in any asymptotic regions
of operation yielding unbiased efficient estimates, 2) any standard
Small-Error or Large-Error bound on the MSE has a non-standard
version lower bounding the MSE of NSMLEs.

3. ON THE SUBOPTIMALITY OF NSMLES

In the present communication, the discussion is restricted to the case
where the supports of p (x,θr|θ) and p (θr|x, θ) are independent
of θ: ∆ (θ) =

{
(x,θr) ∈ CM × RPr | p (x,θr|θ) > 0

}
, ∆

and Πθr|x (θ) =
{
θr ∈ RPr | p (x,θr|θ) > 0

}
, Πθr|x. Let

L2 (Ω), respectively L2 (∆) , be the real Euclidean space of square
integrable real-valued functions over the domain Ω, respectively ∆.
Let us denote φ =

(
θ,θTr

)T ∈ Θ × RPr , p (x|φ) , p (x|θr, θ)

and Ex|φ [ ] , Ex|θr,θ [ ]. Then any estimator φ̂ =
(
θ̂, θ̂

T

r

)T
,

φ̂ (x,θr) ∈ L2 (∆) of a selected vector value φ, uniformly unbi-
ased for p (x|φ), must comply with:

∀φ′ ∈ Θ× RPr : Ex|φ′
[
φ̂
]

= φ′, (3)

which implies that:

∀θ′ ∈ Θ : ETx,θ′r|θ′
[
φ̂
]

= ETθ′r|θ′
[
φ′
]

=
(
θ′, ETθ′r|θ′

[
θ′r
])
, (4)

that is φ̂ is an uniformly unbiased estimate of g (θ)T =
(
θ, ETθr|θ [θr]

)
for p (x,θr|θ). As the reciprocal is not true:

∀θ′ ∈ Θ : Ex,θ′r|θ′
[
φ̂− φ′

]
= 0 ;

∀φ′ ∈ Θ× RPr : Ex|φ′
[
φ̂− φ′

]
= 0,

then U (∆) =
{
φ̂ ∈ L2 (∆) verifying (3)

}
⊂

V (∆) =
{
φ̂ ∈ L2 (∆) verifying (4)

}
1. Let U (Ω) and V (Ω) be

the restriction to L2 (Ω) of U (∆) and V (∆). As ∀φ̂ ∈ L2 (∆):

Ex,θr|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T ]
=

Ex,θr|θ

[(
φ̂− Ex|φ

[
φ̂
])(

φ̂− Ex|φ

[
φ̂
])T ]

+

Eθr|θ

[(
Ex|φ

[
φ̂
]
− g (θ)

)(
Ex|φ

[
φ̂
]
− g (θ)

)T ]
, (5a)

therefore, if φ̂ ∈ U (∆):

Ex,θr|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T ]
=

Ex,θr|θ

[(
φ̂− φ

)(
φ̂− φ

)T ]
+ Cθ (φ) (5b)

1In most cases, the inclusion is strict leading to strict inequalities (6a-6c)

where Cθ (φ) =

[
0 0
0 Cθ (θr)

]
and Cθ (θr) is the covariance

matrix of θr . Also, as U (Ω) ⊂ V (Ω) and U (Ω) ⊂ U (∆), finally:

min
φ̂∈V(Ω)

{
Ex|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T ]}
≤

min
φ̂∈U(Ω)

{
Ex,θr|θ

[(
φ̂− φ

)(
φ̂− φ

)T ]}
+ Cθ (φ) (6a)

and, in particular, as θ̂ = eT1 φ̂ where e1 = (1, 0, . . . , 0)T :

min
θ̂∈V(Ω)

{
Ex|θ

[(
θ̂ − θ

)2
]}
≤ min
θ̂∈U(Ω)

{
Ex|θ

[(
θ̂ − θ

)2
]}

.

(6b)
In any asymptotic regions of operation yielding unbiased efficient
estimates, θ̂ML ∈ V (Ω), θ̂ ∈ U (Ω) and both reach the minimum
MSE. Thus, according to (6b), the NSMLEs of θ is generally an
asymptotically suboptimal estimator of θ (in the MSE sense) in com-
parison with the MLE of θ. Therefore, from a theoretical as well as
a practical viewpoint, it is of interest to investigate the suboptimality
of the NSMLEs, which can be, in some extent, quantified by LBs
derivation and comparison.

4. NON-STANDARD LOWER BOUNDS

It is worth noticing that an equivalent form of (6a) is:

min
φ̂∈V(Ω)

{
Ex|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T ]}
−Cθ (φ) ≤

min
φ̂∈U(Ω)

{
Eθr|θ

[
Ex|φ

[(
φ̂− φ

)(
φ̂− φ

)T ]]}
, (6c)

since the latter form (6c) is the corner-stone to derive LBs on the
MSE of NSMLEs. Indeed, since U (Ω) ⊂ U (∆), any LB on the
MSE over U (∆) is a LB on the MSE over U (Ω).
In its seminal work in standard estimation [19], Barankin has shown
that the locally-best at θ uniformly unbiased estimator is the solution
of a norm minimization under linear constraints [5, Section 2]:

min
θ̂∈L2(Ω)

{∥∥∥θ̂ (x)− θ
∥∥∥2

θ

}
under〈

θ̂ (x)− θ | υθ (x; θ′)
〉
θ

= θ′ − θ,∀θ′ ∈ Θ,
(7)

where υθ (x; θ′) =
p(x|θ′)
p(x|θ) denotes the likelihood ratio (LR), and:

MSEθ
[
θ̂
]

=
∥∥∥θ̂ (x)− θ

∥∥∥2

θ
, 〈g (x) | h (x)〉θ = Ex|θ [g (x)h (x)] .

Unfortunately, if Θ contains a continuous subset of R, then the norm
minimization (7) leads to an integral equation with no analytical so-
lution in general. As a consequence, many studies quoted in [28]-
[32] have been dedicated to the derivation of “computable” LBs ap-
proximating the MSE of the locally-best uniformly unbiased estima-
tor, aka the Barankin bound (BB). All these approximations derive
from sets of discrete or integral linear transform of the ”Barankin”
constraint (7):

Ex|θ

[(
θ̂ (x)− θ

)
υθ
(
x; θ′

)]
= θ′ − θ,∀θ′ ∈ Θ.

These results are readily generalizable to the parameters vector
case [30][31], that is any Barankin bound approximation (BBA)



on min
φ̂∈U(∆)

{
Ex|φ

[(
φ̂− φ

)(
φ̂− φ

)T ]}
can be derived from

discrete or integral linear transforms of the set of constraints:

∀n ∈ [1, N ] , Ex|φ

[(
φ̂− φ

)
υφ (x;φn)

]
= φn − φ, (8a)

where υφ (x;φn) = p(x|φn)
p(x|φ)

, that is as the solution of:

min
φ̂∈U(∆)

{
Ex|φ

[(
φ̂− φ

)(
φ̂− φ

)T ]}
under

Ex|φ

[(
φ̂− φ

)
υTφ
(
ΦN
)]

= Ξ
(
ΦN
)
,

(8b)

where ΦN =
[
φ1 . . . φN

]
, Ξ
(
ΦN
)

=
[
φ1 − φ . . . φN − φ

]
,

υφ

(
ΦN
)

, υφ

(
x; ΦN

)
=
(
υφ

(
x;φ1

)
, . . . , υφ

(
x;φN

))T
,

which defines the following BBA [30, Lemma 1]:

Cφ

(
φ̂BBA

)
= Ξ

(
ΦN
)
R−1

υφ

(
ΦN
)
Ξ
(
ΦN
)T
,

φ̂BBA = Ξ
(
ΦN
)
R−1

υφ

(
ΦN
)
υφ

(
x; ΦN

)
,

(8c)

where Rυφ

(
ΦN
)

= Ex|φ
[
υφ

(
ΦN
)
υTφ
(
ΦN
)]

and

Cφ

(
φ̂BBA

)
= Ex|φ

[(
φ̂BBA − φ

)(
φ̂BBA − φ

)T ]
is the co-

variance matrix of φ̂BBA. Even if in general φ̂BBA , φ̂BBA (x;φ)
(8c) is a clairvoyant estimator and does not belong to U (Ω), as:

Eθr|θ

[
Cφ

(
φ̂BBA

)]
≤

min
φ̂∈U(Ω)

{
Ex,θr|θ

[(
φ̂− φ

)(
φ̂− φ

)T ]}
,

(9)

U (Ω) containing asymptotically the NSMLEs, it seems sensible

to call Eθr|θ

[
Cφ

(
φ̂BBA

)]
a non-standard LB (NSLB) and to

denote NSLB , Eθr|θ

[
Cφ

(
φ̂BBA

)]
to make the difference

with the modified LBs (MLB) which are LBs on

min
φ̂∈V(∆)

{
Ex,θr|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T ]}
[5]. In the same

vein, Eθr|θ

[
Cφ

(
φ̂BBA

)]
can also be regarded as a non-standard

BBA (NSBBA). Note that in general, the NSLBs cannot be arranged
in closed form due to the presence of the statistical expectation.
They however can be evaluated by numerical integration or Monte
Carlo simulation.
Last, since U (∆) * V (Ω) and V (Ω) * U (∆), no general result

can be drawn from (6c) on the ordering betweenEθr|θ

[
Cφ

(
φ̂BBA

)]
+

Cθ (φ) and min
φ̂∈V(Ω)

{
Ex|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T ]}
or any

BBA computed on V (Ω).

4.1. Lower bound examples

A typical example is the CRB obtained for N = 2, where φ1 =(
θ,θTr

)T
and φ2 =

(
θ + dθ,θTr

)T
, leading to the following subset

of constraints:(
0

dθ

)
= Ex|φ

[(
θ̂ (x,θr)− θ

)( 1

υφ

(
x;φ2

))] , (10a)

which is equivalent to [33, Lemma 3]:(
0

1

)
= Ex|φ

[(
θ̂ (x,θr)− θ

)( 1
υφ(x;φ2)−1

dθ

)]
, (10b)

and can be reduced to [33, Lemma 2]:

1 = Ex|φ

[(
θ̂ (x,θr)− θ

) p (x|θr, θ + dθ)− p (x|θr, θ)
dθp (x|θr, θ)

]
,

(10c)
since Ex|φ

[
1×

(
υφ

(
x;φ2

)
− 1
)]

= 0. Then by letting dθ be
infinitesimally small, (9) becomes:

NSCRB , Eθr|θ

[
Ex|φ

[(
∂ ln p (x|φ)

∂θ

)2
]−1]

, (11)

that is the Miller and Chang bound [6, (7)]. Following the rationale
introduced in [22], a straightforward extension of (11) is obtained for
ΦN =

[
φ1 . . . φN

]
, φn =

(
θ + (n− 1) dθ,θTr

)T
, 1 ≤ n ≤ N .

Indeed the set of N associated constraints:

dθ (0, . . . , N − 1)T = Ex|φ

[(
θ̂ (x,θr)− θ

)
υφ

(
ΦN
)]
,

(12a)
by letting dθ be infinitesimally small, becomes equivalent to [22]:

(0, 1, 0, . . . , 0)T = Ex|φ

[(
θ̂ (x,θr)− θ

)
b′ (x;φ)

]
, (12b)

where b′ (x;φ) = 1
p(x|φ)

(
p (x|φ) , ∂p(x|φ)

∂θ
, . . . , ∂

N−1p(x|φ)

∂N−1θ

)T
.

As Ex|φ [b′1 (x;φ) b′n (x;φ)] = Ex|φ

[
∂np(x|φ)
∂nθ

]
= 0, 2 ≤ n ≤

N − 1, (12b) is actually equivalent to [33, Lemma 2]:

e1 = Ex|φ

[(
θ̂ (x,θr)− θ

)
b (x;φ)

]
, (12c)

where b (x;φ) = 1
p(x|φ)

(
∂p(x|φ)
∂θ

, . . . , ∂
N−1p(x|φ)

∂N−1θ

)T
, e1 =

(1, 0, . . . , 0)T , and (9) leads to the BaBs [18] of order N − 1 [35]:

NSBaB , Eθr|θ

[
eT1 Ex|φ

[
b (x;φ) bT (x;φ)

]−1

e1

]
. (13)

Last, a key representative of the Large Error bounds is the Mcaulay-
Seidman bound (MSB) [24] which is the practical form of the BB.
Its non-standard form is : NSMSB = Eθr|θ

[
Cφ

(
φ̂BBA

)]
.

4.2. Tighter non-standard lower bounds

Interestingly enough, it is quite simple to introduce tighter NSLBs.
It suffices to note that the addition of any subset of K constraints:

∀k ∈ [N + 1, N +K] ,φk − φ =

Ex|φ

[(
φ̂ (x,θr)− φ

)
υφ

(
x;φk

)]
,φk =

(
θk,
(
θkr

)T)T
,

to (8b) restricts the class of viable estimators φ̂ (x,θr) and therefore
increases the associated NSBBA (8c), leading to:

Eθr|θ

[
Ξ
(
ΦN
)

R−1
υφ

(
ΦN
)

Ξ
(
ΦN
)T ]

≤

Eθr|θ

[
Ξ
(
ΦN+K

)
R−1

υφ

(
ΦN+K

)
Ξ
(
ΦN+K

)T ]
, (14a)

and, regarding the estimation of θ, to:

Eθr|θ

[
ξ
(
θN
)T

R−1
υφ

(
ΦN
)
ξ
(
θN
)]
≤

Eθr|θ

[
ξ
(
θN+K

)T
R−1

υφ

(
ΦN+K

)
ξ
(
θN+K

)]
, (14b)



where ξ
(
θL
)

=
(
θ1 − θ, . . . , θL − θ

)T
, ΦL =

[
φ1 . . . φL

]
,

Ξ
(
ΦL
)

=
[
φ1 − φ . . . φL − φ

]
for L ∈ {N,N +K}.

A typical example is given by the NSCRB (11). Indeed by adding to
(10a) the following K = Pr constraints:

0 = Ex|φ

[(
θ̂ (x,θr)− θ

)
υφ

(
x; ΦK

)]
,

υφ

(
x; ΦK

)
=
(
υφ

(
x;φ1) , . . . , υφ

(
x;φK

))T
,

where φk =
(
θ,
(
θr + ukh

k
r

)T)T
and uk is the kth column of

the identity matrix IPr , one obtains the following equivalent set of
constraints [33, Lemma 3+Lemma 2]:

e1 = Ex|φ

[(
θ̂ (x,θr)− θ

)
c
(
x; ΦK+1

)]
,

c
(
x; ΦK+1

)
=
(

1
dθ

(
p(x|θr,θ+dθ)
p(x|θr,θ)

− 1
)
,

1
h1

(
p(x|θr+u1h1,θ)

p(x|θr,θ)
− 1
)
, . . . , 1

hK

(
p(x|θr+uKhK ,θ)

p(x|θr,θ)
− 1
))

.

By letting (dθ, h1, . . . , hPr ) be infinitesimally small, then
c
(
x; ΦK+1

)
→ ∂ ln p(x|φ)

∂φ
and (14b) becomes [34, (24)]:

Eθr|θ

[
Ex|φ

[(
∂ ln p (x|φ)

∂θ

)2
]−1]

≤

Eθr|θ

[
eT1 Ex|φ

[
∂ ln p (x|φ)

∂φ

∂ ln p (x|φ)

∂φT

]−1

e1

]
. (15)

The above example illustrate that the tightest form of any NSLB is
obtained when the set of unbiasedness constraints are expressed for
φ as in (14b), however, at an additional cost in numerical integra-
tion or Monte Carlo simulation to evaluate the additional statistical
expectations.

4.3. Further considerations

Since any existing standard Small-Error [7][15]-[18] or Large-Error
bound [19]-[26][28]-[31] on φ can be obtained from (8c), it has a
non-standard form obtained from Eθr|θ

[
Cφ

(
φ̂BBA

)]
[5]. Let us

recall that in general φ̂BBA , φ̂BBA (x;φ) ∈ U (∆), therefore the
associated NSLB can not be compared a priori neither with the MSE
of θ̂ML ∈ V (Ω) nor with any of its LBs (computed with p (x|θ)).
In particular, NSLBs are not in general neither upper bounds on the
MSE of θ̂ML nor on any of its LBs; comparisons are possible only
on a ”case-by-case basis”. However if p (θr|θ) does not depend on
θ, then one can derive inequalities between modified [5] and non-
standard LBs (proofs are given in [36]). In the general case where
p (θr|θ) does depend on θ, no general inequalities between modified
and non-standard LBs can any longer be exhibited; comparisons are
possible only on a ”case-by-case basis”.

5. A NEW LOOK AT GAUSSIAN OBSERVATION MODELS

In many practical problems of interest (radar, sonar, communication,
...), the complex M -dimensional observation vector x consists of a
bandpass signal which is the output of an Hilbert filtering leading
to a complex Gaussian circular vector x ∼ CN (mx,Cx) [1][37,
§13][38]. Two particular signal models are mostly considered: the
deterministic (conditional) signal model and the stochastic (uncon-
ditional) signal model [39]. In the deterministic case the unknown

parameters are connected with the expectation value, whereas they
are connected with the covariance matrix in the stochastic one. A
simple and well known instantiation is:

xt = s (τ) at + nt, 1 ≤ t ≤ T, (16)

where a1, . . . , at are the complex amplitudes of the signal, s ( )
is a vector of M parametric functions depending on a single de-
terministic parameter τ , nt ∼ CN

(
0, σ2

nIM
)
, 1 ≤ t ≤ T , are

independent and identically distributed (i.i.d.) Gaussian complex
circular noises independent of the signal of interest. Addition-
ally if a = (a1, . . . , aT )T ∼ CN

(
0, σ2

aIT
)
, then (16) is an

unconditional signal model parameterized by θ =
(
τ , σ2

a, σ
2
n

)T ,
and the MLE (2a) of τ , aka the unconditional MLE (UMLE),
is obtained by minimization of the concentrated criterion [11]:
τ̂ = arg min

τ

{∣∣∣σ̂2
as (τ) sH (τ) + σ̂2

nIM

∣∣∣}. The associated CRB,

aka the unconditional CRB (UCRB), is [11, (4.64)][40]:

UCRBτ = σ2
n

(
2h (τ)Tσ2

a
SNR

SNR+ 1

)−1

, (17)

SNR =
σ2
a ‖s (τ)‖2

σ2
n

, h (τ) =
∂s (τ)

∂τ

H

Π⊥s(τ)

∂s (τ)

∂τ
,

where Π⊥a = IM − aaH ‖a‖−2 and SNR is the signal-to-noise ra-
tio computed at the output of the single source matched filter [11].
The NSMLE (2b) of τ is actually the conditional MLE (CMLE)
obtained by minimization of the concentrated criterion [11]: τ̂ =

arg min
τ

{∑T
t=1 xHt Π⊥s(τ)xt

}
, and the associated NSCRB is:

NSCRBτ = Ea|σ2
a

[CCRBτ (a)] , CCRBτ (a) =
σ2
n

2h (τ) ‖a‖2
,

where CCRBτ denotes the conditional CRB associated to the
CMLE [11, (4.68)]. First, it has been shown [11, (4.74)], in the case
of a vector of unknown parameters τ , that asymptotically where
T →∞:

Cθ (τ̂ ) ≥ Cθ (τ̂ ) = UCRBτ ≥ CCRBτ , (18)

which illustrates that the act of resorting to the NSMLE (here the
CMLE) is in general an asymptotic suboptimal choice in the MSE
sense. However, in the case of single unknown parameter τ , (18)
becomes:

Cθ (τ̂) = Cθ (τ̂) = UCRBτ ,

which highlights that in some particular cases the NSMLE may be
asymptotically equivalent to the MLE in the MSE sense.
Second, since ‖a‖

2

σ2
a
∼ χ2

2T , i.e. a chi-squared random variable with
2T degrees of freedom, then [37]:

NSCRBτ =

∣∣∣∣∣ σ2
n

2Tσ2
ah(τ)

T
T−1

∞
if T ≥ 2

if T = 1
. (19)

Therefore, if T ≥ 2:

NSCRBτ
UCRBτ

=
NSCRBτ
Cθ (τ̂)

=
T

T − 1

SNR

SNR+ 1
(20)

which illustrates the facts that NSLB are not in general neither upper
bounds on the MSE of MLEs nor on any of its LBs.



6. REFERENCES

[1] H.L. Van Trees, Detection, Estimation and Modulation Theory,
Part 1, New York, Wiley, 1968

[2] F. Gini, R. Reggiannini, and U. Mengali, “The modified
Cramér-Rao bound in vector parameter estimation,” IEEE
Trans. Commun., 46(1): 52-60, 1998

[3] I. Reuven and H. Messer, “A Barankin-type lower bound on
the estimation error of a hybrid parameter vector,” IEEE Trans.
on IT, 43(3): 1084-1093, 1997

[4] H. L. Van Trees, Optimum Array Processing, Wiley-
Interscience, New-York, 2002

[5] J. Galy, E. Chaumette, F. Vincent, A. Renaux and P. Larzabal,
”Lower bounds for non-standard deterministic estimation”, in
Proc. of IEEE SAM 2016

[6] R. W. Miller and C. B. Chang, “A modified Cramér-Rao bound
and its applications,” IEEE Trans. on IT, 24(3): 398-400, 1978

[7] H. Cramér, Mathematical Methods of Statistics. Princeton, NJ:
Princeton Univ. Press, 1946

[8] E. L. Lehmann and G. Casella, Theory of Point Estimation (2nd
ed.). Springer, 1998

[9] P. Stoica, A. Nehorai, ”Performances study of conditional and
unconditional direction of arrival estimation”, IEEE Trans. on
SP, 38(10): 1783-1795, 1990

[10] M. Viberg and B. Ottersten, ”Sensor array processing based on
subspace fitting”, IEEE Trans. on SP, 39(5): 1110-1121, 1991

[11] B. Ottersten, M. Viberg, P. Stoica and A. Nehorai, ”Exact and
large sample maximum likelihood techniques for parameter
estimation and detection in array processing”, in Radar Ar-
ray Processing, S. Haykin, J. Litva, and T. J. Shepherd, Eds.
Berlin, Germany: Springer-Verlag, ch. 4, pp. 99-151, 1993

[12] J. Li and R. T. Compton, ”Maximum likelihood angle estima-
tion for signals with known waveforms”, IEEE Trans. on SP,
41(9): 2850-2862, 1993

[13] A. Renaux, P. Forster, E. Chaumette, and P. Larzabal, ”On the
high snr cml estimator full statistical characterization”, IEEE
Trans. on SP, 54(12): 4840-4843, 2006

[14] R.A. Fisher, ”On an absolute criterion for fitting frequency
curves”, Mess. of Math., 41: 155-160, 1912
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