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Abstract—In modern array processing or spectral analysis,
mostly two different signal models are considered: the conditional
signal model (CSM) and the unconditional signal model. The
discussed signal models are Gaussian and the signal sources
parameters are connected either with the expectation value in
the conditional case or with the covariance matrix in the uncon-
ditional one. We focus on the CSM resulting from several ob-
servations of partially coherent signal sources whose amplitudes
undergo a Gaussian random walk between observations. In the
proposed generalized CSM, the signal sources parameters become
connected with both the expectation value and the covariance
matrix. Even though an analytical expression of the associated
generalized conditional maximum likelihood estimators (GCM-
LEs) can be easily exhibited, it does not allow computation of
GCMLEs in the large sample regime. As a main contribution, we
introduce a recursive form of the GCMLEs which allows their
computation whatever the number of observations combined.
This recursive form paves the way to assess the effect of partially
coherent amplitudes on GCMLEs mean-squared error in the
large sample regime. Interestingly, we exhibit non consistent
GMLEs in the large sample regime.

I. INTRODUCTION

In many practical problems of interest (radar, sonar, commu-
nication, ...) dealing with deterministic parameters estimation,
the observations consists of a complex circular vector [1]. In
this instance, one of the most studied estimation problem is
that of identifying the components of a vector of observations
y1

1 formed from a linear superposition of P signal sources
x1 to noisy data v1 [2][3][4][5]

y1 = H1 (θ) x1+v1, y1,v1 ∈ CN1 ,H1 (θ) ∈ CN1×P , (1a)

where the mixing matrix depends on an unknown deterministic
parameter vector θ ∈ RQ. This problem has received consid-
erable attention during the last fifty years, both for time series
analysis [4] and array processing [5]. In the first case, one
usually has to estimate the frequencies of complex sine waves
from a single experiment data. In the second case, one looks
for the directions of arrival (or spatial frequencies) of multiple
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1Hereinafter, scalars, vectors and matrices are represented, respectively, by
italic, bold lowercase and bold uppercase characters. [A B] and

[A
B

]
denote

the matrix resulting from the horizontal and the vertical concatenation of A
and B, respectively. The matrix resulting from the vertical concatenation of
k matrices A1, ... , Ak of same column number is denoted Ak . I is the
identity matrix. E [·] denotes the expectation operator. If x and y are two
complex random vectors: Cx, Cy and Cx,y are respectively the covariance
matrices of x, of y and the cross-covariance matrix of x and y.

plane waves impinging on a narrow-band array of sensors
using multiple snapshots. Theses two problems have been
merged into the framework of modern array processing [1][5]
where mostly two different signal models are considered: the
conditional signal model (CSM) and the unconditional signal
model [3]. The discussed signal models are Gaussian and the
angular/frequency dependency is given by parameters which
are connected with the expectation value in the conditional
case and with the covariance matrix in the unconditional one.

In this paper, we focus on the CSM where k (k ≥ 2)
observations are available, that is 1 ≤ l ≤ k:

yl = Hl (θ) x1 + vl, yl,vl ∈ CNl ,Hl (θ) ∈ CNl×P , (1b)

and the Gaussian measurement noise sequence {vl}kl=1 is
temporally and spatially white: vl ∼ CN

(
0, σ2

vI
)
. In the

standard CSM, a perfectly coherent signal sources scenario
amounts to assume that the individual signals x1 remain per-
fectly constant during the k observations. If one concatenates
the observation vectors yl on a horizon of k observations from
the first observation, i.e. yTk =

(
yT1 , . . . ,y

T
k

)
, then one obtains

the following augmented CSM:

yk = Hk (θ) x1 + vk, yk ∼ CN
(
Hk (θ) x1, σ

2
vI
)
, (1c)

where yk,vk ∈ CNk , Hk (θ) ∈ CNk×P , Nk =
∑k
l=1Nl.

However, in a real-life experiment some experimental fac-
tors may prevent from observing perfectly coherent signal
sources (see Section IV). In that perspective, we address the
case where the signal sources are partially coherent because
their amplitudes undergo a Gaussian random walk between
observations:

xl = Fl−1xl−1 + wl−1, 2 ≤ l ≤ k, (2a)
yl = Hl (θ) xl + vl, 1 ≤ l ≤ k, (2b)

where xl,wl−1 ∈ CP , Fl−1 ∈ CP×P , and the fluctuation
noise sequence {wl}k−1l=1 is Gaussian, temporally white and
uncorrelated with the noise sequence {vl}kl=1. The Gaussian
random walk (2a) introduces a more general class of CSM for
which (1c) becomes:

yk = Ak (θ) x1 + nk (θ) ,

yk ∼ CN
(
Ak (θ) x1,Cnk

(θ)
)
, (2c)

where nk (θ) ∈ CNk and Ak (θ) ∈ CNk×P are detailed here-
inafter in Section II. The most noteworthy point introduced



by the proposed generalized CSM (2c), is that the parameters
θ are now connected with both the expectation value and the
covariance matrix, which is a significant change in comparison
with the usual CSM (1c). As shown in Section II, even in
the simplest case where the set of unknown parameters is
restricted to x1 and θ, the MLEs of x1 and θ based on
yk (2c), so-called in the following the generalized CMLEs
(GCMLEs) of x1 and θ, are the solution of the maximization
of a risk Rk (θ) (6b) involving the computation of C−1nk

(θ)
and |Cnk

(θ)|, where Cnk
(θ) is not block diagonal (except

if Cwl
= 0, 1 ≤ l ≤ k − 1). Therefore, the computation of

the GCMLE of θ from the batch-form of Rk (θ) becomes
computationally intractable as the number of observations
k increases. It is likely the reason why the study of the
performance of this class of Gaussian observation model in the
large sample regime (k →∞) has been somewhat overlooked
in the open literature [1][5].

Interestingly enough, the observation model of interest (2a-
2b) belongs to the general class of linear discrete state-
space (LDSS) models [6] represented with the state (2a) and
measurement (2b) equations. By exploiting some new results
on linear minimum variance distortionless response (LMVDR)
filters for LDSS models [7][8], we show that the GCMLEs
of x1 and θ can be recursively computed without the need
to compute at each new observation C−1nk

(θ) nor |Cnk
(θ)|

where Cnk
(θ) is a Nk-by-Nk matrix, but only the inverse or

the determinant of a few Nk-by-Nk matrices. The immediate
benefit brought by these recursive forms is the computability of
the GCMLEs of x1 and θ for any value of k. A second benefit
is the capability to assess their mean-squared error (MSE) in
the large sample regime (k →∞), at least by Monte-Carlo
simulations. The example given in Section IV exemplifies
the non negligible impact of an amplitude fluctuation which
introduces a lower limit in the achievable MSE of GCMLEs of
x1 and θ. From a practical point of view, the existence of this
lower limit shows that, when signal sources become partially
coherent, there exists an optimal number of observations that
can be combined in order to estimate their amplitudes and
other unknown associated parameters with the minimum (or
almost minimum) achievable MSE.

II. ANALYTICAL EXPRESSION OF GCMLES

Since the Gaussian random walk (2a) of the individual
signals x1 can be recast as, 2 ≤ l ≤ k:

xl = Bl,1x1 + Glwl−1, Glwl−1 =
l−1∑
i=1

Bl,i+1wi, (3a)

Gl ∈ CP×(l−1)P , Bl,i =

∣∣∣∣∣∣
Fl−1Fl−2...Fi, l > i

I , l = i
0 , l < i

,

an equivalent form of (2b) is:

yl = Al (θ) x1 + nl (θ) , Al (θ) = Hl (θ) Bl,1,∣∣∣∣∣ n1 = v1

nl (θ) = vl + Hl (θ) Glwl−1, 2 ≤ l ≤ k
, (3b)

leading to (2c):

yk =


y1

y2

...
yk

 =


H1 (θ)
A2 (θ)

...
Ak (θ)

x1 +


v1

n2 (θ)
...

nk (θ)


= Ak (θ) x1 + nk (θ) . (3c)

For the sake of simplicity, we assume that σ2
v , {Fl}k−1l=1 ,

{Cwl
}k−1l=1 are known. Thus the set of unknown parameters is

restricted to x1 and θ.
Since yk ∼ CN

(
Ak (θ) x1,Cnk

(θ)
)

(3c), the log likeli-
hood function is, up to a constant value, defined as [4][5][1]:

L (yk;θ,x1) = − ln |Cnk
(θ)|

−
(
yk −Ak (θ) x1

)H
C−1nk

(θ)
(
yk −Ak (θ) x1

)
, (4)

and the GCMLEs of x1 and θ based on yk are given by:(
x̂1|k, θ̂k

)
= arg max

x1,θ
{L (yk;θ,x1)} . (5)

It is then well known [4][5][1] that x̂1|k = x1|k

(
θ̂k

)
where:

x1|k (θ) =
(
A
H

k (θ) C−1nk
(θ) Ak (θ)

)−1
A
H

k (θ) C−1nk
(θ) yk,

(6a)

θ̂k = arg max
θ
{Rk (θ)} , Rk (θ) = L

(
yk;θ,x1|k (θ)

)
(6b)

or equivalently:

θ̂k = arg max
θ
{Ik (θ)− Jk (θ)} (7a)

Ik (θ) =

∥∥∥∥Π
C−1

nk
(θ)

Ak(θ)
yk

∥∥∥∥2
C−1

nk
(θ)

, (7b)

Jk (θ) = ln |Cnk
(θ)| (7c)

where ΠC
A = A

(
AHCA

)−1
AHC and ‖u‖C denote, re-

spectively, the oblique projection matrix on span {A} and the
norm of vector u for the Hermitian inner product defined by
the Hermitian positive-definite matrix C.
According to (7a-c), the GCMLE of θ is the solution of the
maximization of a non-linear multidimensional optimization
problem involving the computation of C−1nk

(θ) and |Cnk
(θ)|,

where Cnk
(θ) is not block diagonal (except if Cwl

= 0,
1 ≤ l ≤ k − 1).
As a consequence, if one resorts to a grid search approach to
solve the maximization problem, for each selected value θi of
the grid, the evaluation of Ik

(
θi
)

and Jk
(
θi
)

request O
(
N 3
k

)
multiplications, whereNk =

∑k
l=1Nl, which becomes rapidly

computationally prohibitive as the number of observations k
increases.



III. RECURSIVE FORM OF GCMLES

In this section, we consider the computation of x1|k (θ)
(6a) and {Ik (θ) ,Jk (θ)} (7b-7c) for a selected value θ of
the parameter space. We show that

{
x1|k (θ) , Ik (θ)

}
and

Jk (θ) can be computed recursively by means of two distinct
recursions; a first one associated with a LMVDR filter and a
second one associated with a Kalman Filter (KF).
For legibility, we omit the dependency of Hl and nl on θ;
Hl (θ) and nl (θ) are simply denoted Hl and nl. The same
applies to Cnk

(θ), x1|k (θ), Ik (θ) and Jk (θ) simply denoted
Cnk

, x1|k, Ik and Jk.

A. Recursive form of x1|k (θ) and Ik (θ)

By noticing that:

Π
C−1

nk

Ak
yk = Ak

(
A
H

k C−1nk
Ak

)−1
A
H

k C−1nk
yk = Akx1|k,

Ik can be rewritten as:

Ik = xH1|kP
−1
1|kx1|k, P1|k =

(
A
H

k C−1nk
Ak

)−1
. (8)

While at first glance estimators for LDSS models may not
seem to relate directly with the problem at hand, it turns out
that by exploiting some new results on LMVDR filters [7][8],
one can show that x1|k and Ik can be recursively computed
from observation to observation, without the need to compute
at each new observation C−1nk

as in (6a) and (8). The proof is
obtained as follows.

Step1: one builds from (2a-b) an auxiliary LDSS model con-
sisting of the same observations associated with an augmented
state for l ≥ 2:

l = 1 : y1 = H1x1 + v1

l = 2 :


(

x2

κ2

)
=

[
F1

I

]
x1 +

(
w1

0

)
y2 = [H2 0]

(
x2

κ2

)
+ v2

l ≥ 3 :


(

xl
κl

)
=

[
Fl−1 0

0 I

](
xl−1
κl−1

)
+

(
wl−1

0

)
yl = [Hl 0]

(
xl
κl

)
+ vl

which can be recast as:∣∣∣∣∣ x′1 = x1

y1 = H′1x
′
1 + v1

, l ≥ 2 :

∣∣∣∣∣ x′l = F′l−1x
′
l−1 + w′l−1

yl = H′lx
′
l + vl

,

(9)

provided that H′1 = H1, F′1 =

[
F1

I

]
, and ∀l ≥ 2:

x′l =

(
xl
κl

)
,F′l =

[
Fl 0

0 I

]
,w′l−1 =

(
wl−1

0

)
,H′l = [Hl 0] .

Then (3b) becomes:

yl = A′lx1 + n′l, A′l = H′lB
′
l,1,∣∣∣∣∣ n′1 = v1

n′l = vl + H′lG
′
lw
′
l−1, 2 ≤ l ≤ k

. (10)

Note that by definition, ∀l ≥ 1:

B′l,1 = F′l−1 . . .F
′
2F
′
1 =

[
Fl−1 0

0 I

]
. . .

[
F2 0

0 I

][
F1

I

]
=

[
Bl,2 0
0 I

] [
F1

I

]
=

[
Bl,1

I

]
,

A′l = H′lB
′
l,1 = [Hl 0]

[
Bl,1

I

]
= HlBl,1 = Al,

and ∀l ≥ 2:

G′lw
′
l−1 =

l−1∑
i=1

B′l,i+1w
′
l =

l−1∑
i=1

[
Bl,i+1 0

0 I

](
wq

0

)
=

( ∑l−1
i=1 Bl,i+1wq

0

)
=

(
Glwl−1

0

)
.

Therefore, ∀l ≥ 2:

n′l = vl + H′lG
′
lw
′
l−1 = vl + HlGlwl−1 = nl. (11)

Step2: since H′1 = H1 and Cv1
have full rank, if we consider

the LDSS model (9), the LMVDR filter of x′k exists [7][8] and
is defined by2:

W
b

k = arg min
Wk

{
Pk|k

(
Wk

)}
s.t. W

H

k A
′
k = B′k,1, (12a)

where Pk|k
(
Wk

)
= E

[(
W

H

k yk − x′k

)(
W

H

k yk − x′k

)H]
,

which is equivalent to [7][8]:

W
b

k = arg min
Wk

{
E
[
r̂kr̂

H
k

]}
s.t. W

H

k A′k = B′k,1,

r̂k = W
H

k n′k −G′kw
′
k−1, Wk =

[
W

x

k W
κ
k

]
. (12b)

Since W
b

k is analogous to a linearly constrained Wiener filter
[9, §2.5], its batch form is given by [9, §2]:

Cn′k
W

b

k = A′k

(
A′

H

k C−1n′k
A′k

)−1 (
B′k,1

)H
+ (13a)(

I−A′k

(
A′

H

k C−1n′k
A′k

)−1
A′

H

k C−1n′k

)
Cn′k,G

′
kw
′
k−1

,

that is, since n′k = nk and A
′
k = Ak:

Cnk
W

b

k = Ak

(
A
H

k C−1nk
Ak

)−1 [
BH
k,1 I

]
+ (13b)(

I−Ak

(
A
H

k C−1nk
Ak

)−1
A
H

k C−1nk

)[
Cnk,Gkwk−1

0
]
.

Therefore, (12a-12b) yields the following separable solutions:(
W

x

k

)b
= C−1nk

Ak

(
A
H

k C−1nk
Ak

)−1
BH
k,1+

C−1nk

(
I−Ak

(
A
H

k C−1nk
Ak

)−1
A
H

k C−1nk

)
Cnk,Gkwk−1(

W
κ
k

)b
= C−1nk

Ak

(
A
H

k C−1nk
Ak

)−1
, (14a)

2The superscript b is used to remind the reader that the value under
consideration is the ”best” one according to a given criterion.



leading to:

x1|k =
(
A
H

k C−1nk
Ak

)−1
A
H

k C−1nk
yk = κ̂bk|k (14b)

P1|k =
(
A
H

k C−1nk
Ak

)−1
=

E

[(
κ̂bk|k − κ̂k|k

)(
κ̂bk|k − κ̂k|k

)H]
. (14c)

Thus, there is a connection between the LMVDR filter of x′k
from (9) and x1|k in (6a) and P1|k in (8).

Step3: the auxiliary LDSS model (9) satisfies the usual un-
correlation conditions associated with the KF: a) the noise
sequences {w′l} and {vl} are zero-mean, white, uncorrelated
with known covariances Cw′l

and Cvl
, b) x′1 = x1 is

uncorrelated with {w′l,vl}. Based on these facts, the solution
of (12a-12b) can also be computed recursively, since then the
LMVDR filter shares the same recursion as the KF, except for
the initialization [7][8].

Finally, x1|k (6a) and Ik (7b)(8) can be computed recursively
as follows:

Ik = xH1|kP
−1
1|kx1|k,


x1|k = [0 I] x̂′

b

k|k

P1|k = [0 I] Pb
k|k

[
0

I

] , (15a)

where x̂′
b

k|k and Pb
k|k follow the KF recursion [7][8]:

x̂′
b

k|k =
(
I−WbH

k H′k
)
F′k−1x̂

′b
k−1|k−1 + WbH

k yk, (15b)

Pb
k|k−1 = F′k−1P

b
k−1|k−1F

′H
k−1 + Cw′k−1

(15c)

Wb
k =

(
H′kP

b
k|k−1H

′H
k + Cvk

)−1
H′kP

b
k|k−1 (15d)

Pb
k|k =

(
I−WbH

k H′k
)
Pb
k|k−1, (15e)

except at time k = 1 where:

x1|1 = Pb
1|1H

H
1 C−1v1

y1, Pb
1|1 =

(
HH

1 C−1v1
H1

)−1
. (15f)

B. Recursive form of Jk (θ)

Firstly, according to [10, 14.17]:

|Cnk
| =

∣∣∣∣[ Cnk−1
Cnk−1,nk

CH
nk−1,nk

Cnk

]∣∣∣∣ =
∣∣Cnk|nk−1

∣∣ ∣∣Cnk−1

∣∣ ,
Cnk|nk−1

= Cnk
−CH

nk−1,nk
C−1nk−1

Cnk−1,nk
.

Secondly, according to (2c): Cnk
, Cyk

and Cnk|nk−1
,

Cyk|yk−1
. Therefore Cnk|nk−1

, Cyk|yk−1
can be computed

by the KF recursion associated to the LDSS model resulting
from the addition to (2a-2b) of the following initial state
equation: x1 = F0x0 + w0, Cx0

= 0, F0 = I, Cw0
= 0.

Indeed then Cnk|nk−1
, Cyk|yk−1

, Sbk|k−1 [6] where:

Pb
k|k−1 = Fk−1P

b
k−1|k−1F

H
k−1 + Cwk−1

(16a)

Sbk|k−1 = HkP
b
k|k−1H

H
k + Cvk

(16b)

Kb
k = Pb

k|k−1H
H
k

(
Sbk|k−1

)−1
, (16c)

Pb
k|k =

(
I−Kb

kHk

)
Pb
k|k−1. (16d)

Finally Jk can be computed recursively as:

Jk = ln
∣∣∣Sbk|k−1∣∣∣+ Jk−1. (16e)

IV. AN EXAMPLE OF GCSM

A. Measurement of the backscattering coefficient of a target

Let us consider a radar system consisting of a 1-element
antenna array receiving scaled, time-delayed, and Doppler-
shifted echoes of a known complex bandpass signal. The
antenna receives a pulse train (burst) of N pulses with a
pulse repetition interval T , backscattered by a ”slow” moving
target [11] (no range migration during the burst). The target
is assumed to have a radial motion towards the radar with an
imposed constant radial speed ω and a constant aspect angle,
which leads to a constant complex backscattering coefficient ρ
along the trajectory. At time tl, a simplified observation model
at the output of the range matched filter is given by [11]:

yl = hl (θ)β
ρ

r2l
+ vl, hTl (θ) =

(
1, . . . , ej2πθ(N−1)

)
where θ = −2ωT/λc, −0.5 ≤ θ ≤ 0.5, is the (normalized)
Doppler frequency of the target, λc is the radar wavelength, rl
is the range of the target at time tl, β represents the complex
factor including transmission power, antenna gain and signal
processing gains, and vl is a temporally white thermal noise
with known power σ2

v . Indeed, in a radar system, the thermal
noise power is accurately estimated from snapshots obtained
while the transmitter is turned off. In order to increase the
precision of the measurement of ρ, k observations are made
along the trajectory. For the sake of illustration, the time tl,
1 ≤ l ≤ k, are set such that r2l = r21/f

l−1, which leads to the
desired observation model:

yl = hl (θ)βf
l−1 ρ

r21
+ vl

m
yl = hl (θ)βxl + vl, x1 =

ρ

r21
, xl = fxl−1. (17a)

However, in a real-life experiment some experimental fac-
tors generally prevent from having a constant backscattering
coefficient. For instance, it may be difficult for a target to
keep a strictly constant radial trajectory, or fluctuation of the
propagation medium are sometime unavoidable during the
whole observation time interval. All these factors can be taken
into account globally by introducing a random fluctuation from
observation to observation, which leads to a more realistic
observation model:

yl = hl (θ)βxl + vl, x1 =
ρ

r21
, xl = fxl−1 + wl−1. (17b)

Secondly, due to adverse wind conditions, the true velocity of
the target may differ from the desired one; hence the Doppler
frequency θ must be estimated as well. In this setting, the joint
estimation of (x1, θ) in the ML sense based on k observations
leads to the GCMLEs

(
x̂1|k, θ̂k

)
(6a-7a).



B. A case study

Both CMLEs of (θ, x1) deriving from the CSM (17a)
and GCMLEs of (θ, x1) deriving from the GCSM (17b) are
displayed on Fig. 1. and Fig. 2. in the following case study:
N = 10, θ = 0.1, x1 = (1 + j) /

(
2
√

2
)
, σ2

v = 1, and f =
1.01, which means that the range of the target changes signifi-
cantly as the number of observations increases (1 ≤ k ≤ 250).
Both CMLEs and GCMLEs of (θ, x1) are obtained via the
recursive form of x1|k (θ), Ik (θ) and Jk (θ) computed over
a discretization of ]−0.5, 0.5[ with a step of 1/4096. The
empirical MSEs are assessed with 104 Monte-Carlo trials. In
order to highlight the impact of a target random fluctuation
(17b) on the MSE of the MLEs, we consider three cases
with small fluctuations

(
σ2
wl

= σ2
w ∈

{
10−5, 10−4, 10−3

})
.

We also provide the conditional Cramér-Rao bound (CCRB)
for θ and x1 [12].
As expected, in the case of a pure CSM (17a), the CMLEs
of θ and x1 based on yk are asymptotically consistent and
efficient in the large sample regime where the size of hk, that
is N × k, increases indefinitely [12]. What is more surprising
is the behavior of the MSE of the GCMLEs of θ and x1 which
saturates in the large sample regime. Since the recursive form
of x1|k (θ), Ik (θ) and Jk (θ) only involves matrices of size
N ×N , i.e. 10 × 10 in the present case study, the saturation
highlighted does not result from numerical issues involved
in inverse or determinant computation. The correctness of
the results displayed is also supported by the fact that the
CMLEs computed with the same algorithm (in the particular
case where σ2

wl
= σ2

w = 0) behaves as expected [12].
Thus, Fig. 1. and Fig. 2. exemplify the impact of a target
fluctuation on the MLEs performance in the large sample
regime, which introduces a lower limit in the achievable MSE.
Practically speaking, this lower limit shows that, when the
amplitude of a target becomes partially coherent, there exists
an optimal number of observations that can be combined
in order to estimate its parameters with a nearly minimum
achievable MSE.

Fig. 1. MSE of the CMLE and GCMLE of θ versus k

Fig. 2. MSE of the CMLE and GCMLE of x1 versus k

V. CONCLUSION

The introduction of a numerically stable recursive form of
the GCMLEs allows computation of the GCMLEs in the large
sample regime and paves the way to assess their MSEs, at least
by Monte-Carlo simulations. By relying on the simple example
introduced, there is every reason to believe that the GCMLEs
are non consistent MLEs in the large sample regime, which
highlights both the consequence of partially coherent signal
sources and the consequence of combining (even slightly)
dependent observations. The numerical evaluation of the as-
sociated CRBs (see [5, (8.34)]) will allow to determine if
the GCMLEs are efficient or not in the large sample regime.
However since the CRBs depends on C−1nk

(θ), a recursive
form of the CRBs is required to obtain reliable numerical
evaluations, which is the topic of on-going research.
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