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ABSTRACT

In this paper, we derive a closed-form expression of a Bayesian
Craḿer-Rao bound (BCRB) for the estimation of a dynamical phase
offset. We consider the scenario of an uncoded AWGN transmis-
sion and a Wiener phase-offset model. We provide an analytical ex-
pression of this bound in both the so-calledoff-line andon-linecon-
texts. Taking benefit from the derived BCRB expression, we study
its asymptotic behavior.

Index Terms— Synchronization, phase estimation, communi-
cation system performance

1. INTRODUCTION

In digital communication systems, phase error considerably degrades
the receiver performance. Synchronization is therefore a fundamen-
tal task of the receiver. In order to assess the performance of practical
phase estimators [1], a classical tool is the Cramér-Rao lower Bound
(CRB) which is a fundamental limit on the variance of any unbi-
ased estimator. Considering dynamical parameter estimation, the
unknown parameters can no longer be regarded as ”deterministic”
and the performance analysis requires the derivation of the Bayesian
CRB (BCRB). So far, BCRBs associated to dynamical carrier-phase
synchronization have already been considered in some contributions,
see particularly Brossieret al. [2] and Dauwels [3, 4]. In [2], the au-
thors provide a sequential expression of the BCRB for the one-line
dynamical phase estimation. In [3, 4], the author proposes a nu-
merical method based on graph representation to efficiently evaluate
CRBs.

In this contribution, we derive a BCRB associated to the estima-
tion of a dynamical phase offset obeying a Wiener model. We con-
sider an uncoded BSPK scenario. We first focus on the off-line sce-
nario by providing a closed-form expression of the BCRB whereas
Dauwels’ results are numerical [3]. We then consider its asymptotic
behavior at low and high SNR. As a by-product, we show that the
change from the off-line scenario to the on-line scenario is straight-
forward, completing in this way the result of Brossieret al [2]. Fi-
nally, we derive the asymptote of the off-line BCRB for an infinite
number of observations.

This paper is organized as follows. In Section 2, we set the
system model. In Section 3, we present and derive the BCRB. In
Section 4, the asymptotic cases at low and high-SNR are studied. In
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Section 5, an on-line interpretation of the bound is given. Finally,
Section 6 gives an illustration of the bounds for different scenarios.

2. MODEL

We consider the transmission of a BPSK modulated sequencea =
[a0 · · · aK−1]

T over an AWGN channel affected by a time-varying
phase offset. Assuming that the received signal has been ideally
filtered and sampled at the optimum sampling instant, the discrete-
time baseband signal is given by

yk = akejθk + nk with k = 0 . . . K − 1, (1)

whereθk is the phase offset affectingyk andnk is a zero-mean cir-
cular Gaussian noise with known varianceσ2

n, so that the SNR is
related to theEs/N0-ratio as Es

N0
= 1

σ2
n

. We assume an uncoded
scenario so that the transmitted symbols are independent and identi-
cally distributed (i.i.d.) withp(ak = ±1) = 1

2
. We furthermore

assume that the phase offset obeys a Wiener model,i.e.,

θk = θk−1 + wk, (2)

wherewk is an i.i.d. zero-mean Gaussian noise with known variance
σ2

w. This model is commonly used [5] to describe the behavior of
practical oscillators. In the sequel, we stack the carrier phase offsets
in a vectorθ = [θ0 · · · θK−1]

T and the observations in a vector
y = [y0 · · · yK−1]

T .

3. EXPRESSION OF THE OFF-LINE BCRB

Van Trees [6] shows that any estimatorθ̂(y) is bounded by the in-
verse of the Bayesian Information Matrix (BIM), sayB, as follows

Ey,θ

�
(θ̂(y)− θ) (θ̂(y)− θ)T � ≥ B−1. (3)

The BIM can be written as a function of the Fisher Information Ma-
trix F(θ) as follows

B = Eθ

�
F(θ)

�
+ Eθ

�−∆θ
θ log p(θ)

�
, (4)

F(θ) = Ey|θ
�−∆θ

θ log p(y|θ)
�
, (5)

where∆µ
ψ represents the second-order partial derivative operator

i.e.,
h
∆µ

ψ

i
k,l

= ∂2

∂ψk∂µl
.

The first term of (4) can be interpreted as the average informa-
tion with respect toθ brought by the observationsy; on the other
hand, the last term can be regarded as the information available from
the prior knowledge ofθ, i.e., p(θ). This term actually accounts for
the time dependence between phase offsets at different instants.



3.1. COMPUTATION OF Eθ[F(θ)]

The evaluation ofEθ[F(θ)] requires the computation ofF(θ). Us-
ing the observation model defined in Section 2, the log-likelihood
function can be expanded as

log p(y|θ) = log
X
a

p(y|a, θ) p(a). (6)

Using the whiteness of the noise and the independence of the trans-
mitted symbols, one then obtains that

∆θ
θ log p (y|θ) =

K−1X

k=0

∆θ
θ log p (yk|θk) . (7)

It is important to note that each term of the sum (7) is a matrix with
only one non-zero element, namely,

h
∆θ

θ log p (yk|θk)
i

k,k
=

∂2

∂θ2
k

log p (yk|θk) . (8)

As a direct consequence,∆θ
θ log p (y|θ) is a diagonal matrix with

thekth diagonal element given by equation (8). Moreover, because
of the phase model and the Gaussian nature of the noise,p (yk|θk)
is invariant with respect to the time indexk. Then, one has that

Eθ [FK (θ)] = JDIK , (9)

whereIK is theK ×K identity matrix and whereJD is defined as
follows

JD , Ey,θ

�
−∂2 log p (yk|θk)

∂θ2
k

�
. (10)

3.2. COMPUTATION OF Eθ[∆θ
θ log(p(θ))]

Due to the Wiener structure of the phase model (2),∆θ
θ log p (θ) can

be expanded as

∆θ
θ log p (θ) = ∆θ

θ log p (θ0) +

K−1X

k=1

∆θ
θ log p (θk|θk−1) . (11)

The first term is a matrix with only one non-zero element, namely,

the element(0×0) which is equal to
h
∆θ

θ log p (θ0)
i
0,0

= ∂2 log p(θ0)

∂θ2
0

.

The other terms in (11) are matrices with only four non-zero ele-
ments, namely,(k−1, k−1), (k−1, k), (k, k−1) and(k, k). Due
to the Gaussian nature of the noise, one finds that:
h
∆θ

θ log p (θk|θk−1)
i

k,k
=
h
∆θ

θ log p (θk|θk−1)
i

k−1,k−1
=
−1

σ2
wh

∆θ
θ log p (θk|θk−1)

i
k,k−1

=
h
∆θ

θ log p (θk|θk−1)
i

k−1,k
=

1

σ2
w

With these previous expressions, one finally obtains

− Eθ[∆θ
θ log p(θ)] =

0
BBBBBBBBBB@

1
σ2

w
− Eθ0

h
∂2

∂θ2
0

log p(θ0)
i

−1
σ2

w
0 . . . 0

−1
σ2

w

2
σ2

w

−1
σ2

w

. . .
...

0
. . .

. . .
. . . 0

...
. . . −1

σ2
w

2
σ2

w

−1
σ2

w

0 . . . 0 −1
σ2

w

1
σ2

w

1
CCCCCCCCCCA

(12)

In the sequel, for the sake of conciseness, we setEθ0

h
∂2 log p(θ0)

∂θ2
0

i
=

0. This corresponds to the case of a non-informative prior aboutθ0.

3.3. ANALYTICAL EXPRESSION OF THE OFF-LINE BCRB

In this subsection, an analytical expression of the diagonal elements
of the inverse of the BIM is displayed. These elements lower-bound
the MSE achievable by any off-line estimator of the time-varying
phase offsetθk ’s.

From (9) and (12), the BIM can be written as

BK = b

0
BBBBB@

A + 1 1
1 A 1

. . .
. . .

. . .
1 A 1

1 A + 1

1
CCCCCA

, (13)

whereA andb are defined byA , −σ2
wJD − 2 andb , −1/σ2

w. In
particular,BK is a symmetric sparse matrix. Based on its structure,
one finds that thekth diagonal element ofB−1

K can be expressed as
(see Appendix A)

�
B−1

K

�
k,k

=
1

|BK |
h
ρ2
1 (b + r1)

2 rK−3
1 + ρ2

2(b + r2)
2rK−3

2

− b2

A− 2
(rk−1

1 rK−k−2
2 + rK−k−2

1 rk−1
2 )

i
, (14)

where we use the following definitions:

r1 =
b

2

�
A +

p
A2 − 4

�
, r2 =

b

2

�
A−

p
A2 − 4

�
, (15)

ρ1 =

q
1− 4

A2 + 1

2
q

1− 4
A2

, ρ2 =

q
1− 4

A2 − 1

2
q

1− 4
A2

. (16)

4. JD EVALUATION AND ASYMPTOTIC CASES

In this section, we briefly discuss the practical evaluation of the
BCRB. Then, we derive high and low-SNR approximation of the
BCRB which give an alternative to the evaluation of (14).

4.1. BCRB EVALUATION

It is clear from (14)-(16) that the computation of the BCRB requires
to evaluateJD (10). Notice that, using the Gaussian nature of the
noise and the equiprobability of the data symbols, the term in the
expectation (10) may be written as

∂2 log p(yk|θk)

∂θ2
k

= − 2

σ2
n

Re(xk) tanh
� 2

σ2
n

Re(xk)
�

(17)

+
4

σ4
n

Im2(xk)

�
1− tanh2

�
2

σ2
n

Re(xk)

��
,

wherexk , yk e−jθk . Unfortunately, the expectation of (17) with
respect toy andθ (see (10)) does not have any analytical solution.
JD can however be straightforwardly evaluated via numerical inte-
gration methods.

4.2. High-SNR Asymptote

From the definition of the BIM (4), it is clear that onlyEθ[F(θ)]
depends on the SNR and from (9) thatEθ[F(θ)] is fully charac-
terized byJD (10). Consequently, we can exclusively focus on the
high-SNR behavior ofJD to provide a high-SNR asymptote of the
BCRB.



At high SNR, tanh in (17) can be approximated as

tanh
h

2
σ2

n
Re(xk)

i
≈ sign

�
Re(xk)

�
. As a consequence one has

(seee.g.,[2])

JD ≈ 2

σn
√

π
e
− 1

σ2
n +

2

σ2
n

erf

�
1

σn

�
, (18)

where erf(x) = 2√
π

R x

0
e−t2dt is the error function. So that

lim
σ2

n→0
JD = 2/σ2

n. ReplacingJD by its limit in (14), we obtain the

high-SNR asymptote.

4.3. Low-SNR Asymptote

By the same reasoning as previously, we only focus onJD. With a
first order Taylor expansion oftanh(z) aroundz = 0, equation (17)
becomes

∂2 log p (yk|θk)

∂θ2
k

≈ −
�

2

σ2
n

Re(xk)

�2

+

�
2

σ2
n

Im(xk)

�2

, (19)

and thus from (10) one obtains an asymptote simply depending on
the observation noise:

JD ≈ 4

σ4
n

. (20)

Plugging (20) into (10), we get a low-SNR asymptote of the BCRB.

5. ON-LINE BCRB

Up to this section, we have focused on the off-line scenario,i.e., the
receiver waits until it has received all the observation (i.e., yk with
k = 0, · · · , K − 1) before estimating the phase offsets. We now
show how the previous results can be used in the case of an on-line
synchronization mode. In the on-line mode, the receiver estimates
θk upon the arrival ofyk, i.e., it bases its estimation on theyl’s with
l = 0, ..., k− 1. In order to deal with such scenario, a Posterior (on-
line) Craḿer-Rao Bound has been derived in [7]. More particularly,
the authors provide a method for updating the BIM from the time
index k to the time indexk + 1. This method has already been
applied to the same scenario as the one considered in this paper in
[2].

Using our previous derivations, we can provide an alternative ex-
pression of the on-line BCRB. Indeed, the on-line BCRB associated
to the observation vectoryk−1

0 , [y0 · · · yk−1]
T is clearly equal to

element(k−1, k−1) of the inverse of the BIM,i.e.,
�
B−1

k

�
k−1,k−1

.
Using expression (14), we therefore have

�
B−1

k

�
k−1,k−1

=
1

fk

h
ρ2
1 (b + r1)

2 rk−3
1 + ρ2

2(b + r2)
2rk−3

2

− b2

A− 2
(rk−2

1 r−1
2 + r−1

1 rk−2
2 )

i
. (21)

From (21), we can derive (see Appendix B) the asymptote of the
on-line BCRB when the number of observations tends to infinity:

lim
k→∞

�
B−1

k

�
k−1,k−1

=
−σ2

w +
q

σ4
w + 4

σ2
w

JD

2
. (22)

6. DISCUSSION

In this section, we analyse and illustrate the behavior of the different
bounds according to both the SNR and the observation number.

We first consider a transmission disturbed by an AWGN with
varianceσ2

n = 0.25 and phase noise with varianceσ2
w = 0.04 rad2.

Figure 1 superimposes the on-line BCRB and its asymptote, and the
off-line BCRBs for different block-observation lengths versus the
time index. Then we obtain the lower bound for each phase offsetθk

according to the considered scenario. In the off-line context, we can
see that the best phase estimate is achieved at mid-block, whereas the
estimates are likely to be poorer at the block boarder (this result can
be proved by analyzing (14)). In this case, all the observations are
used to estimate thekth phase offset. Then at time indexbK−1

2
, the

estimate takes equally advantage of the previous and the next half-
block of observations. In other words, one better benefits from all
thea priori information. On the contrary, the first (and respectively
the last) estimate can only use the following (respectively previous)
observations. The performance is necessarily degraded.

Concerning the on-line bound, at the beginning when the obser-
vation number increases, the estimator takes into account more in-
formation and the estimation can be improved, so that the bound de-
creases and converges to its asymptote: the estimation performance
is limited by the phase noise and the observation noise independently
of the observation number.
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Fig. 1. On-line and Off-line scenarios with different observation
block lengthK with σ2

n = 0.25, σ2
w = 0.04 rad2 and105 Monte-

Carlo Trials

We now consider the transmission of a block ofK = 50 BPSK
symbols disturbed by a phase noise with varianceσ2

w = 0.04 rad2.
Figure 2 superimposes the on-line BCRB and the off-line BCRB
evaluated over105 Monte-Carlo integrations. The on-line BCRB
is plotted at time indexK = 50 whereas the off-line BCRB is cal-
culated at mid-block (k = 25). This bound can also be compared
to its high-SNR and low-SNR asymptotes (which are evaluated at
mid-block). We can see that these asymptotes which are simpler to
evaluate than the BCRB provide an accurate approximation of the
BCRB in the adequate SNR-range. We also note that the off-line
BCRB is generally lower than the on-line bound. At high SNR, the
bounds are close: the information brought by the current observation
is accurate and becomes preponderant over thea priori knowledge of
θ. Consequently the different observations do not seem to be linked
and then we estimateθk with the help ofyk only. Then, the on-line
and off-line bounds become equivalent.
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7. CONCLUSION

In this contribution, we derived a closed-form expression of the
BCRB considering an uncoded BPSK transmission and a Wiener
phase model in both off-line and on-line context. Taking benefit
from our derivations, we then provide asymptotes of the BCRB. In
particular, we derived the low and high-SNR asymptotes of the off-
line BCRB and the asymptote in terms of number of observations for
the on-line scenario. Finally, we compare the BCRB behavior in the
on-line and off-line scenarios.

A. APPENDIX - DIAGONAL ELEMENTS OF THE BCRB

In this appendix, we detail the calculus of the diagonal elements (14)
of the inverse of the BIM (13). We use the classical matrix-inversion
formula [B−1

K ]k,k = Ck,k |BK |−1 , (23)

whereCk,k is the cofactor of the element[BK ]k,k and|BK | is the
determinant ofBK . We need to compute this cofactor and|BK |.

• Preliminary calculus. We define the determinantdk of the
following k × k matrix

Dk = b

0
BBBBB@

A 1
1 A 1

. . .
. . .

. . .
1 A 1

1 A

1
CCCCCA

Expandingdk along the first and the second column, one ob-
tainsdk = Abdk−1 − b2dk−2 with d0 = 1 andd1 = bA.
{dk} is thus a linear recurrent sequence. Using the initial
terms, an analytical expression ofdk is given by

dk = ρ1 (r1)
k + ρ2 (r2)

k for k ∈ N, (24)

whereρ1, ρ2, r1 andr2 are defined by (15) and (16).

• Determinant|BK |.
In a first step, by expanding|BK | along the first column,
we obtain a sum of two cofactors which are then expanded

along the last column. Doing so, one has that|BK | =
(A + 2) bdK−1.

• CofactorCk,k. In order to calculate the cofactor(k, l), one
has to delete the rowk and the columnl of the matrixBK and
one obtains a two-block-diagonal matrix. The upper (respec-
tively lower) block is notedUBK (respectivelyLBK ). The
cofactor is thus the product of two determinants:

Ck,k = |UBK | |LBK |
= (bdk−1 + dk) (bdK−k−2 + dK−k−1) . (25)

• Diagonal elements. Rewriting (23) and using (24) and (25),
one has
�
B−1

K

�
k,k

=
1

|BK |
h
ρ2
1 (b + r1)

2 rK−3
1 + ρ2

2(b + r2)
2rK−3

2

− b2

A− 2
(rk−1

1 rK−k−2
2 + rK−k−2

1 rk−1
2 )

i
.

B. APPENDIX - BEHAVIOR OF THE ON-LINE BCRB

Using (23) and (25),
�
B−1

K

�
K−1,K−1

can be written as

�
B−1

K

�
K−1,K−1

=
A + 1

b (A + 2)
− 1

b (A + 2)
uK , (26)

whereun , dn
bdn−1

=
Aun−1−1

un−1
with u1 = A. Clearly,

this sequence is strictly increasing and converges tou∞ =
1
2

�
A−√A2 − 4

�
. Combining this result with (26), we have

that
�
B−1

K

�
K−1,K−1

is a strictly deacreasing sequence with
the following limit:

lim
K→∞

�
B−1

K

�
K−1,K−1

=
−σ2

w +
q

σ4
w + 4

σ2
w

JD

2
. (27)
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