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ABSTRACT Section 5, an on-line interpretation of the bound is given. Finally,

. . . ._Section 6 gives an illustration of the bounds for different scenarios.
In this paper, we derive a closed-form expression of a Bayesian

Cran®r-Rao bound (BCRB) for the estimation of a dynamical phase 2. MODEL
offset. We consider the scenario of an uncoded AWGN transmis-
sion and a Wiener phase-offset model. We provide an analytical exte consider the transmission of a BPSK modulated sequenee

pression of this bound in both the so-caltefétine andon-linecon-  [ao - --ax—1]" over an AWGN channel affected by a time-varying

texts. Taking benefit from the derived BCRB expression, we studyhase offset. Assuming that the received signal has been ideally

its asymptotic behavior. filtered and sampled at the optimum sampling instant, the discrete-

Index Terms— Synchronization, phase estimation, communi-tlme baseband S|gn§:) Is given by

cation system performance yr = age’ F +n, withk=0...K —1, 1)

wheredy, is the phase offset affecting, andn,, is a zero-mean cir-
1. INTRODUCTION cular Gaussian noise with known variang@, so that the SNR is

related to theEs /Ny-ratio as sz = U% We assume an uncoded

In digital communication systems, phase error considerably degradggenario so that the transmitted symbols are independent and identi-

the receiver performance. Synchronization is therefore a fundamegy)ly distributed (i.i.d.) withp(ax = +1) = 1. We furthermore

tal task of the receiver. In order to assess the performance of practicgksume that the phase offset obeys a Wiener moeel,

phase estimators [1], a classical tool is the CGgafRao lower Bound

(CRB) which is a fundamental limit on the variance of any unbi- Ok = Or—1 + Wk, )
ased estimator. Considering dynamical parameter estimation, thgherewy, is ani.i.d. zero-mean Gaussian noise with known variance
unknown parameters can no longer be regarded as "deterministi¢’2 . This model is commonly used [5] to describe the behavior of
and the performance analysis requires the derivation of the Bayesigiactical oscillators. In the sequel, we stack the carrier phase offsets
CRB (BCRB). So far, BCRBs associated to dynamical carrier-phasg a vectord = [0 - ..gKfﬂT and the observations in a vector
synchronization have already been considered in some contributiong, = [y, - - - yx 1]”.

see particularly Brossiat al. [2] and Dauwels [3, 4]. In [2], the au-

thors provide a sequential expression of the BCRB for the one-line 3. EXPRESSION OF THE OFF-LINE BCRB

dynamical phase estimation. In [3, 4], the author proposes a nu-

merical method based on graph representation to efficiently evaluaigyy Trees [6] shows that any estimatby) is bounded by the in-

CRBs. . o . . . verse of the Bayesian Information Matrix (BIM), sBy, as follows
In this contribution, we derive a BCRB associated to the estima- . R - .
tion of a dynamical phase offset obeying a Wiener model. We con- Eyeo (0(y)—0)(0(y)—0) =B . 3

sider an uncoded BSPK scenario. We first focus on the off-line scerhe BIM can be written as a function of the Fisher Information Ma-
nario by providing a closed-form expression of the BCRB whereagyix F(9) as follows

Dauwels’ results are numerical [3]. We then consider its asymptotic 0
behavior at low and high SNR. As a by-product, we show that the B =FEe F(0) + Ee —Aglogp(0) , 4
change from the _off-l_ine s_cenario to the on-line sce_nario is st_raight- F(0) = Eyjo —AY log p(y|0) |, (5)
forward, completing in this way the result of Brosseral [2]. Fi- . o
nally, we derive the asymptote of the off-line BCRB for an infinite wheﬁe A‘ij represents the second-order partial derivative operator
number of observations. e, Ak = %.

This paper is organized as follows. In Section 2, we set the Kol Yk Om . .
system model. In Section 3, we present and derive the BCRB. In The first term of (4) can be interpreted as the average informa-

Section 4, the asymptotic cases at low and high-SNR are studied. n with respect tad brought by the obseryatlorys; on the pther
and, the last term can be regarded as the information available from

This work is partially supported by the European Community contractthe prior knowledge o8, i.e., p(6). This term actually accounts for
NO. 507325, NEWCOM. the time dependence between phase offsets at different instants.




3.1. COMPUTATION OF Eg[F(0)] 3.3. ANALYTICAL EXPRESSION OF THE OFF-LINE BCRB

The evaluation ofZy [F(0)] requires the computation &(6). Us-  In this subsection, an analytical expression of the diagonal elements
ing the observation model defined in Section 2, the log-likelihoodof the inverse of the BIM is displayed. These elements lower-bound

function can be expanded as

log p(y|@) =log  p(yla,8)p(a). (6)

a

Using the whiteness of the noise and the independence of the trans-

mitted symbols, one then obtains that

AG logp (yk|0k) - @)

k=0

Aglogp (y|0) =

It is important to note that each term of the sum (7) is a matrix with

only one non-zero element, namely,
h 0 i 82
Agl = =1 .
o log p (yx|0k) e 02 og p (yx|0k) (8)

As a direct consequencé\§ logp (y|0) is a diagonal matrix with

the k" diagonal element given by equation (8). Moreover, because

of the phase model and the Gaussian nature of the noi3g,0x)
is invariant with respect to the time indéx Then, one has that

Ep [Fx (0)] = Jplk, 9
wherel is the K x K identity matrix and wherdp is defined as

follows
& logp (yx|0r)

A
= F
Jp y.,0 06?

(10)

3.2. COMPUTATION OF E,[A$ log(p(6))]

Due to the Wiener structure of the phase model £ Jog p (8) can
be expanded as

Aglogp(8) = Aglogp (60) +  Aglogp (Bklfr—1). (11)

k=1

the MSE achievable by any off-line estimator of the time-varying
phase offsef’s.
From (9) and (12), the BIM can be written as

(O] 1
A+1 1

1A 1
Bx =b ,
1A 1
1 A+1

(13)

whereA andb are defined byl 2 —¢2.Jp —2andb 2 —1/02,. In
particular, B is a symmetric sparse matrix. Based on its structure,
one finds that th&'" diagonal element dB ' can be expressed as
(see Appendix A)

h
2 K-3

1
P (b+7r1)"r]

-1
By Kk Bx|

+p3(b+ )ty

) -
b k=1 K—k—2 K—k—2 k-1
- A_2(7'1 2 +7r T2 )

(14)
where we use the following definitions:

P P
=l A4 A Za, =l AT 24 (5

1— 541 1— 4 -1

A2 A2

p1=—q74, 02:4q74- (16)
2 1-x 2 1-5

4. Jp EVALUATION AND ASYMPTOTIC CASES

In this section, we briefly discuss the practical evaluation of the
BCRB. Then, we derive high and low-SNR approximation of the
BCRB which give an alternative to the evaluation of (14).

The first term is a matrix with only one non-zeo element, namely,

the element0x0) which is equal to A log p (6o) 202
0

_ 9%logp(Y0)

4.1. BCRB EVALUATION

The other terms in (11) are matrices with only four non-zero eleqy i clear from (14)-(16) that the computation of the BCRB requires

ments, namelyk —1,k—1), (k—1,k), (k,k—1) and(k, k). Due
to the Gaussian nature of the noise, one finds that:

h 1 h 1 1
Aflogp (04|0k—1) = AYlogp (01]6k-1) ==
_k.k k—1,k—1 o4
h i h i 1
A§ log p (0x[0k—1) = A} logp (0k|0k—1) ==
k,k—1 k—1,k Ow
With these previous expressions, one finally obtains
— Eg[A§logp(0)] =
o A, glr?](z] ; 1
%—Eeo ;Tglogp(%) ;T% 0 0
=1 2 -1
7 % o
=1 2 -1
0'12U (72 U:ﬁ)
i
9%logp(fo)  _

In the sequel, for the sake of conciseness, wésgt 592
0. This corresponds to the case of a non-informative prior atiaut

to evaluate/p (10). Notice that, using the Gaussian nature of the
noise and the equiprobability of the data symbols, the term in the
expectation (10) may be written as

9% log p(yx|6k)

2 2
007 = _ERe(xk) tanh ERe(mk)

7)
4 2
-+ EImQ(l’k) 1-— tanh2 EquEk) B

wherex, £ y, e~7% . Unfortunately, the expectation of (17) with
respect toy and@ (see (10)) does not have any analytical solution.
Jp can however be straightforwardly evaluated via numerical inte-
gration methods.

4.2. High-SNR Asymptote

From the definition of the BIM (4), it is clear that onlie [F'(0)]
depends on the SNR and from (9) thag [F'(0)] is fully charac-
terized byJp (10). Consequently, we can exclusively focus on the
high-SNR behavior of/p to provide a high-SNR asymptote of the
BCRB.



A4 high SNR, tanh in (17) can be approximated as 6. DISCUSSION
9 i
tanh oh Re{wy) #~ sign Re(zx) . As a consequence one has In this section, we analyse and illustrate the behavior of the different
(seee.q.[2]) bounds according to both the SNR and the observation number.
We first consider a transmission disturbed by an AWGN with
~ 2 o L 2o L (18) variances? = 0.25 and phase noise with varianeg = 0.04 racf.
on/T a3 n Figure 1 superimposes the on-line BCRB and its asymptote, and the
off-line BCRBs for different block-observation lengths versus the
time index. Then we obtain the lower bound for each phase dffset
according to the considered scenario. In the off-line context, we can
see that the best phase estimate is achieved at mid-block, whereas the
estimates are likely to be poorer at the block boarder (this result can
be proved by analyzing (14)). In this case, all the observations are
used to estimate the" phase offset. Then at time ind¢X52, the
estimate takes equally advantage of the previous and the next half-
block of observations. In other words, one better benefits from all
By the same reasoning as previously, we only focugpn With a  thea priori information. On the contrary, the first (and respectively
first order Taylor expansion ahnh(z) aroundz = 0, equation (17)  the last) estimate can only use the following (respectively previous)
becomes observations. The performance is necessarily degraded.
Concerning the on-line bound, at the beginning when the obser-
0 log p (yx|0x) - 2 R 2 2 | 2 19 vation number increases, the estimator takes into account more in-
002 A &)+ o2 m(zk) » (19)  formation and the estimation can be improved, so that the bound de-
creases and converges to its asymptote: the estimation performance
and thus from (10) one obtains an asymptote simply depending oi§ limited by the phase noise and the observation noise independently

2

R
where erfz) = = * e~ dt is the error function. So that

lim Jp = 2/02. Replacing/p by its limit in (14), we obtain the

2
on—0

high-SNR asymptote.

4.3. Low-SNR Asymptote

the observation noise:

of the observation number.

4

o4’

Plugging (20) into (10), we get a low-SNR asymptote of the BCRB.

Off-Line and On-Line BCRBs

T T
-0~ On-Line BCRB
<+ On-line Asymptote
— Off-line BCRB 8

5. ON-LINE BCRB T

Up to this section, we have focused on the off-line scenagg the
receiver waits until it has received all the observatibe.,(y, with

k =0,---,K — 1) before estimating the phase offsets. We now
show how the previous results can be used in the case of an on-line
synchronization mode. In the on-line mode, the receiver estimates
0i upon the arrival ofyx, i.e., it bases its estimation on thg's with

[ =0,...,k— 1. In order to deal with such scenario, a Posterior (on-
line) Cranér-Rao Bound has been derived in [7]. More particularly,
the authors provide a method for updating the BIM from the time
index k to the time indext + 1. This method has already been . . . . . .
applied to the same scenario as the one considered in this paperfig- 1. On-line and gjff-lme scenarios with different observation
12]. block lengthK with 62 = 0.25, 02 = 0.04racf and10®> Monte-

. . L . . rlo Trial
Using our previous derivations, we can provide an alternative exg:a 0 Thals

pression of the on-line BCRB. Indeed, the on-line BCRB associated
to the observation vectgri ! £ [yo - - - y,_1]” is clearly equal to

elementk—1, k—1) of the inverse of the BIMi,e,, B, "
Using expression (14), we therefore have

Observation Numbe?

We now consider the transmission of a blockfof= 50 BPSK
symbols disturbed by a phase noise with variamge= 0.04 racf.
Figure 2 superimposes the on-line BCRB and the off-line BCRB
evaluated oved0° Monte-Carlo integrations. The on-line BCRB

1 h is plotted at time inde¥< = 50 whereas the off-line BCRB is cal-
By = Ao+r) i i (b ) s culated at mid-blockX = 25). This bound can also be compared
’ Jr - to its high-SNR and low-SNR asymptotes (which are evaluated at
b’ k-2 -1 1oy 21 mid-block). We can see that these asymptotes which are simpler to
A—2 (™ "ra ") () evaluate than the BCRB provide an accurate approximation of the
BCRB in the adequate SNR-range. We also note that the off-line
From (21), we can derive (see Appendix B) the asymptote of thé8CRB is generally lower than the on-line bound. At high SNR, the
on-line BCRB when the number of observations tends to infinity: bounds are close: the information brought by the current observation
is accurate and becomes preponderant ovea ivéori knowledge of
o2 4 qm 6. Consequently the different observations do not seem to be linked
lim B;l _ w w I (22) and then we estimat®, with the help ofy, only. Then, the on-line
k— oo k—1,k—1 2 and off-line bounds become equivalent.

k—1,k—1"
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Fig. 2. BCRB versus SNR for,, = 0.04racf, K = 50 and.Jp
evaluated ovet0°> Monte-Carlo trials

7. CONCLUSION

In this contribution, we derived a closed-form expression of the
BCRB considering an uncoded BPSK transmission and a Wiener
phase model in both off-line and on-line context. Taking benefit
from our derivations, we then provide asymptotes of the BCRB. In
particular, we derived the low and high-SNR asymptotes of the off-
line BCRB and the asymptote in terms of number of observations for
the on-line scenario. Finally, we compare the BCRB behavior in the

along the last column.
(A+2)bdr—1.
CofactorCy,. In order to calculate the cofacték, ), one

has to delete the roland the columi of the matrixB x and

one obtains a two-block-diagonal matrix. The upper (respec-
tively lower) block is noted/g,. (respectivelyLg, ). The
cofactor is thus the product of two determinants:

Crk = ‘UBK‘ ‘LBKl
= (bdp—1 + di) (bdg —p—2 + dr—k—1) - (25)

Diagonal elements. Rewriting (23) and using (24) and (25),
one has

Doing so, one has thB| =

h
_ 1 . .
By == pb+r) et (b4 )y
e+~ [Bad
b k—1 K—k—2 K—k—2 k—1
- (ri—"m +r Ty ) .

A-2
B. APPENDIX - BEHAVIOR OF THE ON-LINE BCRB

Using (23) and (25),B ;" can be written as

K K-1,K-1
_ A+1 1
Bx' = - 2
K K-1,K-1 b(A—|—2) b(A+2)uK7 ( 6)

dp _ Au, -1

whereu, £ i = =r=t—with uy = A. Clearly,

this sequence is strictly incréasing and converges.to =
1A — /A2 — 4 . Combining this result with (26), we have

2
that B;* is a strictly deacreasing sequence with

K K-1,K-1
the following limit:
q

2
2 g3

-1
K K-1,K-1— 2

on-line and off-line scenarios.

@7)

A. APPENDIX - DIAGONAL ELEMENTS OF THE BCRB
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