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Abstract—In the field of asymptotic performance characterization of the
conditional maximum-likelihood (CML) estimator, asymptotic generally
refers to either the number of samples or the signal-to-noise ratio (SNR)
value. The first case has been already fully characterized, although the
second case has been only partially investigated. Therefore, this corre-
spondence aims to provide a sound proof of a result, i.e., asymptotic (in
SNR) Gaussianity and efficiency of the CML estimator in the multiple
parameters case, generally regarded as trivial but not so far demonstrated.

Index Terms—Array processing, high signal-to-noise ratio (SNR), max-
imum likelihood, statistical efficiency.

I. INTRODUCTION

Parameters estimation of multiple signals impinging on an antenna
array is a fundamental problem in signal processing with applications to
radar, sonar, digital communication and many other fields. A plethora
of algorithms have been proposed in the literature in this sense (see
[1]).

Perhaps the most well-known and frequently used model-based
approach in signal processing is the maximum-likelihood (ML) tech-
nique. When applying the ML technique to a sensors array problem,
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two main methods have been considered, depending on the model
used for the signal waveforms. When the source signals are modeled
as Gaussian random processes, a stochastic ML (SML) is obtained. If,
on the other hand, when the source signals are modeled as unknown
deterministic quantities, the resulting estimator is referred to as the
conditional ML (CML) estimator (see, e.g., [2], for a review of the
two methods).

Asymptotic statistical performance of these ML methods is an
important field of research. For that purpose, the estimation accuracy
is generally investigated by means of the Cramér–Rao bound. Since
two models are used for the different ML methods, two Cramér–Rao
bounds have been derived: the stochastic Cramér–Rao bound when
the source signals are modelled as Gaussian random processes and
the deterministic Cramér–Rao bound when the source signals are
modelled as unknown deterministic quantities (see, e.g., [2], for a
review of these two bounds).

In the array processing context, the term “asymptotic” can be un-
derstood in two different ways: in the number of samples or in the
signal-to-noise ratio (SNR) value. At large number of samples, the
statistical performance of these ML methods has been fully character-
ized (see [3]). Concerning the high SNR context, the nonefficiency (in
comparison with the stochastic Cramér–Rao bound) and the non-Gaus-
sianity of the SML have been recently proven in [4]. Concerning the
CML method in the high-SNR framework, it is generally accepted that
this estimator is Gaussian and efficient although, to our knowledge,
there is no sound proof of this result in the literature in the multi-pa-
rameters case. Indeed, to the best of our knowledge, the CML estimator
has been only partially investigated in [5], where the Gaussianity of the
CML estimates is proved in the single-parameter case by the way of a
Gaussian observation model with parameterized mean. Moreover, the
asymptotic efficiency of the CML estimator in the high-SNR case has
never been demonstrated. This correspondence aims to complete Kay’s
result, i.e., to establish the Gaussianity and the efficiency (in compar-
ison with the deterministic Cramér–Rao bound) of the CML estimator
in the multiple-parameters case. Moreover, we show how these results
still hold for noncircular complex Gaussian noise. Monte Carlo simu-
lations are provided in order to show the accuracy of the analysis.

The notational convention adopted is as follows: italic indicates a
scalar quantity, as inA; lower case boldface indicates a vector quantity,
as in a; upper case boldface indicates a matrix quantity, as in A. The
nth row and mth column element of the matrix A will be denoted by
An;m. RefAg is the real part of A, and ImfAg is the imaginary part
of A. The matrix transpose is indicated by a superscript T as in AT.
jAj is the determinant of the square matrixA. IM is the identity matrix
of order M . E[�] denotes the expectation operator and k:k the norm. A
sample of a random vector a is denoted a(!), where ! belongs to the
event space 
. o(:) and op(:) denote, respectively, the small “o” and
the stochastic small “o” notation.

II. OBSERVATION MODEL AND MAXIMUM-LIKELIHOOD ESTIMATOR

A. Observation Model

In the sequel, we consider the following general observation model:

x(!) =m(p0) + n(!) (1)

where x(!) is a real M �1 sample vector, ! 2 
, p = [p1; . . . ; pP ]
T

is theP�1 (P �M) real vector of unknown deterministic parameters
of interest with true value p0, m is a M � 1 real deterministic vector
depending (generally nonlinearly) on p which is assumed to be identi-
fiable from m(p). n(!) is the M � 1 additive noise vector, which is
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a sample of a random Gaussian, zero-mean vector n with covariance
matrix �2C. C is assumed to be known and �2 is unknown.1

The log-likelihood ln f(x(!)p; �2) of the observations is

ln f x(!);p; �2 = �
1

2
ln (2�)M j�2Cj

�
1

2�2
(x(!)�m(p))TC�1 (x(!)�m(p)) : (2)

Let us note that the study with the observation �x(!) = �m(p0) +
�n(!), where �x(!), �m and �n(!) are complex, can be handled by the
real model (1). Indeed, by stacking the real and imaginary parts of
�x(!), �m, and �n(!), one obtains

Re f�x(!)g

Im f�x(!)g
=

Re f �m(p0)g

Im f �m(p0)g
+

Re f�n(!)g

Im f�n(!)g
(3)

which is similar to the (1). Modifications of (2) are straightforward and
lead to an augmented covariance matrix (2M � 2M) instead of C
taking into account the possible noncircularity of the noise [6].

So, the two following important problems in the array processing
context can be statistically characterized in the framework of model
(1):

• The CML method (with the notations of [2, eq. (4.16)]):

XN = A(���0)SN +NN (4)

by setting

m(p) = Re (vec (A(���0)SN))T Im (vec (A(���0)SN ))T (5)

where p = [���T; vec(SN )T]T.
• The so-called known waveforms model (see, e.g., [7]) (with the

notations of [7, eq. (8)])

x(t) = A(���0)P(t)���+ n(t) (6)

by setting

m(p) = Re (vec (A(���0)P(t)���))T Im (vec (A(���0)P(t)���))T
T

(7)
where p = [���T; ���T]T. This model finds applications in active radar
and in data-aided processing for mobile communications.

B. Maximum-Likelihood Estimator

The ML estimate of p is given by

p̂(!) = argmin
p

(x(!)�m(p))TC�1 (x(!)�m(p)) : (8)

The solution of (8) is obtained by setting the gradient of the criterion
(x(!)�m(p))TC�1(x(!)�m(p)) equal to zero. This leads to the
set of P equations where the dependence on n(!) is explicitly shown

g (p;n(!)) jp=p̂(!) = 0 (9)

where the elements of g = [g1(p;n(!)); � � � ; gP (p;n(!))]
T , for i =

1; . . . ; P , are given by

gi (p;n(!)) = (x(!)�m(p))TC�1
@m(p)

@pi

= (m(p0)�m(p) + n(!))T

�C�1
@m(p)

@pi
: (10)

1The high-SNR analysis is equivalent to an analysis of � ! 0.

III. PERFORMANCE AT HIGH SNR

An improvement on the well-known Kay approach [5] is to resort
to the implicit function theorem (see [8, Theorem 9.28]): Indeed, this
theorem not only provides a framework for a sound demonstration of
the asymptotical Gaussian behavior of CML estimator, but also, the an-
alytical expression of the asymptotic estimator covariance matrix that
allows to establish the asymptotic efficiency.

A. Background: The Implicit Function Theorem

Let f(u;v) = [f1(u;v); � � � ; fP (u;v)]
T be a function of IRP �

IRM ! IRP . Let us assume the following.
• Assumption A1): fi(u;v) for i = 1; . . . ; P are differentiable

functions on a neighborhood of the point (u0;v0) in IRP�IRM .
• Assumption A2): fi(u0;v0) = 0 for i = 1; . . . ; P .
• Assumption A3): the P � P Jacobian matrix ��� of fi(u;v) with

respect to u is nonsingular at (u0;v0).
Then, there is a neighborhood V of the point v0 in IRM , there is a

neighborhood U of the point u0 in IRP , and there is a unique mapping
''' : V ! U such that '''(v0) = u0 and fi('''(v);v) = 0 for i =
1; . . . ; P and for all v in V . Furthermore, ''' is differentiable, and we
have

'(v)� u0 = �����1			(v � v0) + r(v � v0) (11)

where the remainder r(v � v0) = o(kv � v0k) and, by setting u =
[u1; . . . ; uP ]

T and v = [v1; . . . ; vM ]T

��� =
@f

@u1 (u ;v )

; � � � ;
@f

@uP (u ;v )

(12)

and

			 =
@f

@v1 (u ;v )

; � � � ;
@f

@veM (u ;v )

: (13)

B. Application to the Criterion Gradient

Let us now detail the structure of ��� and 			 for the specific function
g of (10). For the elements of 			, we have

	i;j =
@gi(u;v)

@vj (u ;v )

=
@vT

@vj
C
�1 @m

@ui (u ;v )

(14)

with 1 � i � P and 1 � j � M . Concerning the elements of ���, we
have

�i;j =
@gi(u; v)

@uj (u ;v )

= �
@mT

@uj
C
�1 @m

@ui
u

(15)

with 1 � i; j � P .
In other words

			 =
@mT

@u
C
�1 @v

@vT
and ��� = �

@mT

@u
C
�1 @m

@uT
: (16)

One can notice that ��� is linked to 			 by

��� = �			C			T (17)
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since @v=@vT = IM .
Let us now apply the implicit function theorem by setting

v = n(!), '''(v) = p̂(!), u0 = p0 and v0 = 0. Let us note
that A2) is obviously satisfied since, without noise, the criterion
(x(!)�m(p))TC�1(x(!)�m(p)) is minimum and equal to 0 for
p = p0. A1) and A3) will be assumed to be satisfied in the sequel.

Consequently, the implicit function theorem leads to

p̂(!)� p0 = �����1			n(!) + r (n(!)) ; 8! 2 
: (18)

C. Asymptotic Gaussianity of the ML Estimator

Let us setnk a sequence of a Gaussian random noise with zero means
and covariance matrices �2kC. �k is a sequence such as �k ! 0 when
k ! 1. Let us set p̂k(!) and nk(!) two sequences of the random
vector p̂k and nk , respectively. p̂k(!) is the corresponding solution
of (9). Let us set �pk(!) = (1=�k)(p̂k(!)� p0) a sequence of the
random vector �pk . Then, the high-SNR analysis of the ML estimator
is given by the behavior of the random vector �pk when k ! 1.
From (18), we have

�pk(!) = �����1			
nk(!)

�k
+
r (nk(!))

�k
; 8! 2 
 (19)

or equivalently in terms of random vectors nk and �pk

�pk = �����1			
nk

�k
+
r(nk)

�k
: (20)

By using [9, Lemma 2.12 (i)], we have

r(nk) = op (knkk) : (21)

We will now study the two terms of the right-hand side of
(20). For that purpose, note that nk=�k follows a Gaussian dis-
tribution with zero mean and covariance matrix C. The term
(r(nk)=�k) = (op(knkk)=�k) can be rewritten as

op (knkk)

�k
=
knkk

�k

op (knkk)

knkk
(22)

where op(knkk)=knkk converges in probability to zero by definition
and where knkk=�k follows a chi law which does not depend on k.
Consequently, op(knkk)=�k converges in probability to zero (see [10,
pp. 122]).

Concerning the term �����1			(nk=�k), it follows a Gaussian distri-
bution with zero mean and covariance matrix ��� equal to

��� =����1			C(����1			)T

=����1			C			T����T

= �����1 = (			C			T)�1 (23)
thanks to (17). Consequently, �pk converges in distribution to a zero-
mean Gaussian random vector with covariance��� = (			C			T)�1 when
k ! 1 or equivalently when �k ! 0. This proves the asymptotic
Gaussianity of the ML estimator at high SNR.

D. Asymptotic Efficiency of the ML Estimator

The closed-form of the error covariance matrix obtained by the
means of the implicit function theorem allows to establish the asymp-
totic efficiency of the ML estimator by a direct comparison with the
Cramér–Rao lower bound (CRLB). For that purpose, let us compute
the Fisher information matrix (FIM), which reduces to a block diag-
onal form thanks to the decoupling between parameter p and �2 [11]

FIM(p0; �
2) =

FIM(p0) 0

0 FIM(�2)
: (24)

Consequently, the CRLB for p0 is given by

CRLB(p0)

= FIM
�1(p0)

= � E
@2 ln f(x;p; �2)

@p@pT

�1

= 2�2 E
@2 (x�m(p))TC�1 (x�m(p))

@p@pT

�1

= ��2 E
@g(p;n)

@pT

�1

= ��2����1 = �2(			C			T)�1: (25)
Finally, the ML estimator is efficient at high SNR since

1

�2
CRLB(p0) = ���: (26)

IV. SIMULATION RESULTS

In this section, simulations are performed to illustrate the validity of
our analysis in the framework of the CML estimator described in [2].
The CRLB is computed according to [2, eq. (4.68)]. In all simulations,
the array is a uniform linear array of M = 10 sensors with half-wave-
length spacing. Direction-of-arrivals (DOA) are given with respect to
the broadside. Monte Carlo simulations have been performed with r =
1000 independent realizations. The ML DOA estimation is performed
with a Gauss–Newton algorithm thanks to a global search over a grid.

A. Efficiency

Let us consider the case of two equi-powered sources located at 0�

and 3� (the array beamwidth is equal to 10�). The CML DOA esti-
mation is performed with T = 10 snapshots. Fig. 1 displays the be-
havior of the CML empirical variance and the CRLB versus SNR. As
expected, the efficiency of the CML estimator at high SNR is observed.

We also observe the well known threshold effect [12] of the esti-
mator variance when the SNR becomes weak (approximatively 5 dB
in this case). This phenomena due to outliers gives the validity domain
in term of efficiency of this asymptotic analysis (see [13] for more de-
tails concerning the CML threshold prediction).

B. Gaussianity

In order to emphasize the high SNR Gaussianity of the CML es-
timator, we have used a Lilliefors goodness-of-fit test [14]. This test
evaluates the hypothesis that a sample [y1 � � � yL] has a normal distri-
bution with unspecified mean and variance against the alternative hy-
pothesis that the sample does not have a normal distribution. This test
is close to the well-known Kolmogorov–Smirnov test,, which requires
the specification of the mean and the variance.

The Lilliefors test statistic Tstat is the maximum vertical distance
between the empirical cumulative distribution function F (s) of the
score series

zk = yk �
1

L

L

i=1

yi =
1

L

L

j=1

yj �
1

L

L

i=1

yi

2

(27)

and the cumulative distribution function of the standard normal distri-
bution Q(s). In other words

Tstat = sup
s2IR

jF (s)�Q(s)j : (28)
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Fig. 1. CRLB and empirical variance of the CML estimator versus SNR for
two sources. M = 10 sensors and T = 10 snapshots.

Fig. 2. Lilliefors testT and cutoff value for the CML estimates versus SNR.
M = 10 sensors, T = 10 snapshots, r = 1000 runs.

The Gaussianity hypothesis is rejected at the significance level �
(equal to 5% in the following example) if T exceeds the 1�� quantile
in a Lilliefors table of quantiles [15] equals to 0:886=

p
r for r > 30.

Here, this cutoff value is 0:886=
p
r = 0:028.

The test has been performed for the aforementioned scenario (two
sources located at 0� and 3�, 10 snapshots, 10 sensors, 1000 runs).
Fig. 2 displays the behavior of Tstat versus SNR. The Gaussianity of
the CML estimator is observed for an SNR higher than approximately
9 dB.

V. CONCLUSION

In this correspondence, we have completed initial Kay works on the
CML characterization at high SNR. Thanks to the implicit function
theorem, we have provided a sound proof of its asymptotic Gaussianity
and efficiency in the multiple parameters case.
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