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Abstract—We compute lower bounds on the mean-square error
of multiple change-point estimation. In this context, the param-
eters are discrete and the Cramér-Rao bound is not applicable.
Consequently, we focus on computing the Barankin bound (BB),
the greatest lower bound on the covariance of any unbiased esti-
mator, which is still valid for discrete parameters. In particular,
we compute the multi-parameter version of the Hammersley–
Chapman–Robbins, which is a Barankin-type lower bound. We
first give the structure of the so-called Barankin information matrix
(BIM) and derive a simplified form of the BB. We show that the
particular case of two change points is fundamental to finding the
inverse of this matrix. Several closed-form expressions of the ele-
ments of BIM are given for changes in the parameters of Gaussian
and Poisson distributions. The computation of the BB requires
finding the supremum of a finite set of positive definite matrices with
respect to the Loewner partial ordering. Although each matrix in this
set of candidates is a lower bound on the covariance matrix of the es-
timator, the existence of a unique supremum w.r.t. to this set, i.e., the
tightest bound, might not be guaranteed. To overcome this problem,
we compute a suitable minimal-upper bound to this set given by
the matrix associated with the Loewner-John Ellipsoid of the set
of hyper-ellipsoids associated to the set of candidate lower-bound
matrices. Finally, we present some numerical examples to compare
the proposed approximated BB with the performance achieved by
the maximum likelihood estimator.

Index Terms—Barankin bound, multiple change-point estima-
tion, performance analysis.

I. INTRODUCTION

E STIMATION of changes in time series is an important
and active research area with several applications, for ex-

ample, in fault detection, medical imaging, genetics, and econo-
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metrics. The literature is abundant concerning estimation algo-
rithms for change-point estimation (see, e.g., [1]–[3]). However,
less work has been done concerning the ultimate performance of
such algorithms in terms of mean-square error (MSE). Indeed,
if an estimator is available, the evaluation of its performance
depends on knowing whether it is optimal or if further improve-
ment is still possible. Note that some other criteria of perfor-
mance in the context of sequential detection of a change-point
are available in the literature; see, e.g., [4], [5], and references
therein.

The classic way to analyze the performance of an estimator
in terms of MSE is to compute the well-known Cramér–Rao
bound (CRB) [6]. Unfortunately, for discrete time-measurement
models the change-point location parameter is discrete; there-
fore the CRB, which is a function of the derivative of the likeli-
hood of the observations w.r.t. the parameters, is not defined.

Several authors have proposed solutions to this problem. In-
deed, in the change-point estimation framework, the CRB has
already been studied using approximations (see, e.g., [7]–[12]).
Depending on the particular parametrization of the data likeli-
hood, two main challenges have been addressed concerning the
CRB computation on the change-point time index: i) the dis-
crete nature of the aforementioned parameter and ii) the regu-
larity conditions of the likelihood of the observation. The former
implies that the parameter does not have a defined derivative
because of its discrete nature [10], and the latter implies that
the likelihood of the observations has to be smooth (details are
given in [6] and [13]), which is not the case for signal param-
eters with sudden changes. To overcome the discrete nature of
the change-point time index, a continuous parametrization has
been proposed (see, e.g., [12] and [14]). To satisfy the regularity
conditions of the data likelihood, the step-like function, which
represents a change in parameter, is generally approximated by
another function with smooth properties (e.g., the so-called sig-
moidal function introduced in [9] and [12] or a Heaviside func-
tion filtered by a Gaussian filter, as in [7]). This new function
depends on parameters that have to be adjusted, and it tends to
the step-like function when the appropriate values of these pa-
rameters are used. The main problem that appears when using
this technique is that the CRB tends to zero when the approxi-
mate function tends to the step-like function [8], [12].

Moreover, it is noteworthy that these previous works
concerning change-point estimation were always done in
the framework of a single change point. To the best of our
knowledge, performance bounds have never been derived in
the multiple change-point context. The latter is important
in off-line estimation of change points where batch-data are
available, for example, in biomedical applications, such as
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DNA sequence segmentation [15], rat EEG segmentation (see
[3, ch. 2]), and uterine MMG contraction detection [16], and
in signal segmentation in general such as speech segmentation
[17], astronomical data analysis [18].

In this paper, we analyze the Barankin bound (BB) [19] for
multiple change-point estimation in the context of an indepen-
dent vector sequence. The Barankin bound is the greatest lower
bound for any unbiased estimator. Moreover, in contrast to the
CRB, its computation is not limited by the discrete nature of the
parameter and the regularity assumptions on the likelihood of
the observations [13], [20]. However, the BB requires the use of
parameters called test points. These test points choice is left to
the user, and, in order to obtain the best (i.e., the tightest) bound,
a nonlinear maximization over these test points has to be per-
formed. This explains why this bound is so much less used and
known than the CRB; nevertheless, the BB is often a practical
bound for realistic scenarios (see, e.g., [21]).

To the best of our knowledge, minimal bounds other than the
CRB have been proposed in the context of change-point esti-
mation only in the foundational communication of Ferrari and
Tourneret [22]. A simplified and practical version of the BB
(i.e., one test point per parameter), the so-called Hammersley–
Chapman–Robbins (HCR) bound [20], [23], is studied in that
paper. As in the previous works on the CRB, only one change
point is considered.

In this paper we extend the results presented in [22] to the
case of multiple change points. We consider the multi-parameter
HCR bound and we show that the so-called Barankin informa-
tion matrix (BIM), which has to be inverted, has an interesting
structure (viz., a block diagonal matrix structure). We show that
the estimation of one change point is corrupted by its neigh-
boring change points and we give the details of the computation
for the two change-point case. This case facilitates the derivation
of a closed-form expression for the inverse of the BIM. Note that
it is possible to find tighter bounds by using more test-points per
parameter, however, such approach does not allow for obtaining
closed-form expressions of the BIM and its inverse as derived
here. We also discuss on the existence of the supremum of the
finite set formed by all possible BB solutions and, following
ideas from [24] and from convex optimization, we compute a
suitable minimal-upper bound to this candidate set with respect
to the Loewner cone, the set of semipositive definite matrices.
In particular, we show that its computation is given by the ma-
trix associated with the Loewner–John ellipsoid of the candidate
set, which is the minimum-volume hyper-ellipsoid covering the
set of hyper-ellipsoids associated to each matrix in the candidate
set. We apply the bounds to the case of changes in the parameters
of Gaussian and Poisson observations. We finally present nu-
merical examples for comparing our bound to the performance
achieved by the maximum likelihood estimator (MLE).

The notational convention adopted in this paper is as follows:
italic indicates a scalar quantity, as in ; lowercase boldface in-
dicates a vector quantity, as in ; uppercase boldface indicates a
matrix quantity, as in . The matrix transpose is indicated by a
superscript as in . The th-row and th-column element
of the matrix is denoted by . The identity matrix of
size is denoted . We define by the matrix such
that and , and

is a diagonal matrix formed by the elements of the row vector
. The trace operator is defined as . The determinant of a

matrix is denoted by and cardinality when applying to a set.
denotes the vector space of symmetric matrices and

the subsets of nonnegative definite matrices and positive definite
matrices are denoted by and , respectively. The notation

means that for , also known as
Loewner partial ordering of symmetric matrices [25], [26]. The
absolute value is denoted by . The indicator function of a
set is denoted by . The expectation operator is denoted
by . The observation and parameter spaces are denoted, re-
spectively, by and .

The remainder of this paper is organized as follows. In
Section II, we present the signal model, the assumptions, and
we introduce the general structure for Barankin bound for the
signal model parameters. The computation and analysis of the
Barankin bound for the change-point localization parameters
are provided in Section III. In Section IV, we analyze the
cases of changes in the parameters of Gaussian and Poisson
distributions. To illustrate our results, simulations are presented
in Section V. Finally, in Section VI we conclude this work.

II. PROBLEM FORMULATION

A. Observation Model

We consider the general case of independent vector ob-
servations which can be ob-
tained, for example, by a multiple sensor system and are mod-
eled as follows:

for
for

...
for

(1)

where is the size of the sample vector (e.g., the number of
sensors), is the number of change-points, and is a prob-
ability density function (or mass function for discrete random
variables) with parameters . In other words,

for , with ,
where we define and . Note that if ,
the problem is reduced to the estimation of changes in a time
series. We assume that all probability density functions be-
long to a common distribution. The unknown parameters of in-
terest are the change-point locations with

,
and . The observations between two consecutive
change points are assumed to be stationary. Consequently, the

vector of unknown true parameters for this model is
.

The observation model (1) is useful in signal processing; sev-
eral examples were mentioned in the Introduction. Note that,
since we focus on the change-point estimation, we assume that
the parameters are known. The resulting bound will still be
useful if these parameters are unknown, but overly optimistic.
Moreover, the complexity of the bound derivation increases for
unknown and therefore we do not consider this case in this
work.
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B. Barankin Bound

The -order BB of a vector , denoted by
, is given as follows (see [27]–[30] for

more details):

(2)

where is the covariance matrix of an unbiased estimator
of the parameter vector . The matrix

is a function of the set , the so-called “test
points,” which are left to the user’s choice. We define

such that the matrix becomes .
Moreover, note that . In the following, for sim-
plicity, we use the term “test point” for the vectors . Finally,

is a matrix whose elements are given by

(3)

where is defined by

(4)

where is the likelihood of the observations with param-
eter vector . Note that the matrix is sometimes re-
ferred to as the Barankin information matrix (BIM) [31].

As already stated, test points choice is left to the user, since
any set of test points in satisfies the inequality (2).
Thus, the tightest BB, denoted by , is given as follows:

(5)

where is the cardinality of the set formed by all possible
parameter values, and is the CRB of , which, as-
suming that it exists, is smaller than the in the Loewner
ordering sense. The computation of is costly, since the
limit on usually implies that a large, possibly infinite, number
of test points needs to be considered, a nonlinear maximization
over the test points has to be performed, and the inverse of the
BIM has to be computed.

Concerning the BB for the parameter vector
depends on the number of samples and change points as
follows:

(6)

Note that as , and for finite
then is finite. In practice, the number of test points and the
particular structure of the matrix is usually chosen based on
the analytical and computational complexity associated with it,
which lead to approximated versions of the BB. In the latter

case it would be useful to have some knowledge of how dif-
ferent Barankin bound approximations compare among each
other w.r.t. Loewner partial ordering. In the following propo-
sition, we provide with a general guideline for this purpose.

Lemma 1: Let with ,
and let and
be the roots of the characteristic equation . If

, then , otherwise and are not mutually
comparable.

Proof: See Appendix A.
If , then , since

by construction, and if
then . The lemma can now be used with

and provided
. Note that

implies that the number of test-points , therefore, a ma-
trix bound cannot be larger, w.r.t. Loewner
partial ordering, than any matrix bound given by a test-point
matrix consisting of independent test-point vec-
tors. Consequently, in the following we will use an approximate
version of the BB that allows us to derive efficiently computed
closed-form expressions for the BIM and its inverse in the con-
text of our multiple change-point estimation problem. In par-
ticular, we will compute the multi-parameter HCR bound [27]
with the classical assumption of one test point per parameter

, i.e., . Then, is a diagonal
matrix given by

(7)

where the vector corresponds to the set of
test points associated to the parameters .
Note that is defined such that ranges over all
possible values of , for . Thus,

. Let be a set formed by all
possible values of . The set is finite, given that is finite.

The matrix corresponds to the BIM for change-
point locations denoted here by . The approximated
BB, , is then obtained from

(8)

By construction, the finite set
is a subset of the partially ordered set with partial order
“ ” given by the Loewner ordering [25], [26]. This partial order
is not a lattice ordering, i.e., each finite subset of may not
be closed under the least-upper (infimum) and greatest-lower
bounds (supremum) [26]. In other words, the notion of a unique
supremum or an infimum of might not exist with respect to
the Loewner ordering. The supremum does not exist if there is
no upper bound to the set, or if the set of upper bounds does not
have a least element. If the supremum exists, it does not need to
be defined in the set, but if it belongs to it, then it is the greatest
element1 in the set. Note that a set with respect to the partially

1� � � is the greatest element of � w.r.t. � ��� if � � � for all
� � � . If the greatest element exists it is an upper-bound of � contained in it.
The least element of � is defined similarly considering � � �.
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ordered set may have several maximal2 and minimal
elements without having a greatest and least element in the set,
respectively. If the set has a greatest or least element, then it is
the unique maximal or minimal element, and therefore it is the
supremum or infimum of the set. Here, we will approach the
computation of the supremum by computing a suitable minimal
element of the set of upper bounds of , namely, a minimal-
upper bound such that and which is minimal
in the sense that there is not smaller matrix such that

. From (2), belongs to set of upper bounds of
, therefore if the set of upper bounds has a unique minimal

element, i.e., a least element, then . However, if
the set of upper bounds has several minimal elements, then in
general we can expect that , or that and

are not mutually comparable.
Having a closed form for makes the task of com-

puting much less computationally demanding than having
to invert for every . In the following section, we
will first derive the elements of and obtain closed-form
expressions for . Then, we will introduce the approach
for computing the minimal-upper bound .

III. BARANKIN BOUND TYPE FOR MULTIPLE

CHANGE-POINT ESTIMATION

To compute the BB for the change point localization param-
eters, we first need to compute , which depends on the
matrix . From (3) and (4), the elements of , for

are given by

(9)

where is given by

(10)

and is given by

(11)

and where is same as (11) .
In order to study and to simplify , we will analyze its diag-

onal and non-diagonal elements separately.

A. Diagonal Elements of

Replacing in (9) and using (11), we obtain the following
expression:

(12)

2� � � is a maximal element of � w.r.t. � ��� if there is not � � �
such that � � � and is a minimal element if there is not � � � such that
� � �.

This equation can be further simplified by considering the
cases and , obtaining the following expression
(see Appendix B for details on its derivation):

If

If
(13)

B. Non-Diagonal Elements of

The computation of the off-diagonal elements of can be
simplified by using the fact that the matrix is symmetric;
therefore, we can focus on either the upper or lower triangular
part of . In our derivations below we consider the upper trian-
gular part, i.e., , then by using (9) and (11), we obtain the
following expression for the elements of

(14)

Following the same idea as for the diagonal elements, can
be simplified by analyzing the four possible combinations of
test-point ranges, namely,

Case 1: and
Case 2: and
Case 3: and
Case 4: and

(15)

For the last case, i.e., and , two subcases have
to be analyzed: i) and ii) .
These two cases correspond to non-overlapping and overlapping
test points, respectively. Note that since and
since , the
case which corresponds to an overlapping
between two test points, can appear only when , or,
in other words, when we are analyzing two neighboring change
points. Then, for Cases 1-3 and subcase i), (14) becomes (see
Appendix C)

for (16)

and for subcase (ii), keeping in mind that and ,
(14) becomes

for

for
(17)

where .
Remark: This last result is fundamental because it proves the

natural intuition that the estimation of change points is not
equivalent to times the estimation of one change point. In other
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words, it means that the estimation of one change point is per-
turbed by its two neighbors. We now summarize the previous
results.

C. Barankin Information Matrix

Using (13), (16), and (17), it is clear that has at least
a tridiagonal structure:

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .

(18)

where

for

If

If
(19)

and

for
If

If
(20)

In the case of one change-point estimation, is reduced
to a scalar , and by replacing we re-obtain the result
proposed by Ferrari and Tourneret (see (5) and (6) in [22]):

If

If
(21)

Note also that the diagonal elements of can be com-
puted numerically in one step (i.e., ) as follows:

(22)

where .
The next step of our analysis is to compute . For a

given set of test points, it is clear that
since

. In other words, , if , then
; therefore, is block diagonal and the

maximum size of one block is 2 2. Since the problem is re-
duced to finding, at worst, the inverse of several matrices
with the same structure, we will have a straightforward inver-
sion. In this section, we detail the case of two change points, we
give the generalization to two neighboring points, and we use
this to derive a closed-form expression for the inverse of
and thus .

1) The Case of Two Change Points: In this case we have
, and becomes

(23)

with

If

If

If

If
(24)

If

If
(25)

where .
Consequently, depending on the given set of test points, the

following five combinations, corresponding respectively to
Cases 1, 2, 3, and 4 in (15), are possible for

(26)

where we define

and .
2) Generalization to Q Change Points: Note that for more

change points the process is the same, except that the inver-
sion has to be computed because of the increase of possibilities.
However, the matrix to be inverted is block diagonal, with block
of size 1 1 or 2 2, as stated in the previous section. In partic-
ular, depending on the values of , the elements of
for and , with and
given by (18), (19), and (20), respectively, and
and have the following possible values:

If then and
thus

for

for
(27)

If then and
thus

for

for
(28)

If then
thus

for
for

(29)
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Therefore, the elements of for ,
which is a symmetric matrix, are given by

for

for

for
(30)

Since the matrix , then
for is given as follows:

for

for

for
(31)

where . If for a given
set of test points there is no overlap with the neighboring
change-points and , then in (31) and
we obtain the particular result
and .
This is equivalent to the bound obtained using the same set
of test points and assuming one change-point located in the
time interval between and with total numbers of
time-samples .

D. Computation of the Supremum

To obtain the tightest bound from the finite set
, we need to compute the

supremum of with respect to the partially ordered set .
The partial order is given by the Loewner ordering, which is
defined via the cone of positive semidefinite matrices [25], [26].
In general, this problem is indeed very complex since it requires
to look for such that
for all . To the best of our knowledge, no formal approach
for solving this problem has been proposed in the technical
literature of minimal bounds. For example, in [28] and [32],
the choice of the test point is guided by some physical con-
siderations of the model being studied. Also, from an optimal
design context [25], an approximation for solving this problem
is to compute the matrix in with the largest trace, .
However, the fact that for , does
not imply that , only the converse statement is valid.
In fact, only if has a greatest element, i.e., the supremum of
the set, then it is given by the matrix in with the largest trace
Let , with , then by definition ,
for all with . Let , thus and

. Hence, for all with
, but as we discussed at the end of Section II, a unique

supremum or an infimum with respect to the Loewner partial
ordering in the finite set might not exist.

Here we address the computation of the supremum by finding
a minimal-upper bound to the set such that

and which is minimal in the sense that there is no smaller ma-
trix such that . In [24], the authors implicitly
introduced an algorithm for computing a minimal-upper bound
to a finite set of positive definite matrices and redefined this ele-
ment as the supremum of the set. Before discussing more details
about it, we need to introduce the so-called penumbra of
a matrix as the set
[24], [25] and the following proposition.

Proposition 2: Define and , then iff
.

Proof: If , then and then,
by the definition of penumbra, . To prove the other
implication, we define a matrix such that .
Then if we have, by the transitivity property of the
Loewner order, , namely, . Therefore,
all the matrix elements in are also in , thus,

.
The penumbra is seen as an inverted cone of vertex

characterizing all matrices that are smaller than [24],
[25]. The authors in [24] and [25] redefined the supremum of
a set of matrices as the matrix associated to the vertex of the
minimal penumbra covering the penumbras of all the matrices
in the set. The minimal-penumbra vertex is a minimal-upper
bound to the set with respect to the partially ordered set

. In [24], the minimal-penumbra vertex is computed by
associating with each matrix a ball in the subspace

, and the authors show that it is
determined by the smallest ball enclosing the set of balls
associated to each matrix in the set. The latter algorithm is
implemented in an approximate manner, by solving instead the
problem of finding the smallest enclosing ball of a set of points
which correspond to samples from the boundaries of each
ball. The success of this method to obtain a minimal-upper
bound matrix depends on the samples chosen. For example,
in the case of two balls, it is easy to show that the smallest
enclosing ball is tangent to each ball border at the two farthest
points from the set of points defined by the intersection of a
line passing through each ball center and each ball boundary.
Therefore, if the sampling procedure does not include this pair
of points, then the resulting ball does not completely enclose
both balls and, thus, the resulting matrix is not a minimal-upper
bound. Moreover, when the dimension is larger than two, a
simple analytical computation shows that this algorithm fails
to obtain a minimal-upper bound matrix for the set formed by
two diagonal matrices not comparable to each other according
to Loewner order.

Here, instead, we propose a method for computing a suitable
for any dimension. First, we show that computing is

equivalent to finding the minimum-volume hyper-ellipsoid cov-
ering the set of hyper-ellipsoids associated to each matrix in the
set . And second, we show that this problem can be written as a
convex objective function with convex constraints which can be
solved efficiently using semidefinite programming. An hyper-
ellipsoid with non-empty interior and centered at the
origin can be represented by the set ,
where . Suppose is another hyper-ellipsoid sim-
ilarly represented, where . Then, the following state-
ment holds.
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Lemma 3: iff .
Proof: By the S-procedure [33], we have that

if and only if there is a such that

with equality when , implying the necessary condition
.

Given a finite set of hyper-ellipsoids
, we can always find a

unique minimum volume hyper-ellipsoid, , containing
the set , i.e., containing all [33]. Since is convex,

is known as the Loewner–John ellipsoid of [33] and,
as we show in the following statement, is a minimal-upper
bound of the set formed by all the
matrices associated to the hyper-ellipsoids in .

Theorem 4: The matrix , associated to the Loewner-John
ellipsoid of the set , is a minimal-upper bound of the set
w.r.t to the Loewner partial ordering.

Proof: We will demonstrate this by contradiction. From
Lemma 3, we have that . Assume that
there exists a matrix such that ,
therefore , for , and thus

. Given that the volume of is less than the
volume of , since it is the minimum volume hyper-ellip-
soid enclosing all , then , but by construction

, thus which is a contradiction. Thus,
and is a minimal-upper bound of the set .

Therefore, computing a minimal-upper bound matrix of
the set is equivalent
to finding the Loewner-John ellipsoid of the set of hyper-el-
lipsoids associated to . This is a particular case of a more
general problem of computing the minimum volume hyper-el-
lipsoid
which covers the union of a set of non centered hyper-ellip-
soids parameterized by the quadratic inequalities

for . This problem
can be posed as [33] (32), shown at the bottom of the page.

The objective function and the set of constraints are convex,
so it can be solved efficiently using semidefinite programming.
In particular, we solve this problem using CVX, a package for
specifying and solving convex programs [34], [35], for

for , and . Therefore,
the minimal-upper bound of the set is given by ,

where is the optimal solution of (32). Using the following
statement, we can even reduce the number of constraints in the
above problem by considering only the set formed by
all the maximal elements of .

Theorem 5: Define as the subset of formed by all
the maximal elements of . Then, the Loewner-John ellip-
soid of is also the Loewner-John ellipsoid of the set

formed by the hyper-ellipsoids associated to the matrices
in .

Proof: Since is formed by all the maximal elements
of , then for and any
we have that . From Lemma 3,

for all , which is true for all , i.e.,
for all , thus for all
and for all . Therefore,

is the Loewner–John ellipsoid for the set and .
Hence, using the above result we decrease the number of con-

straints in (32) by performing a pre-step which identifies the set
. Note that if has a greatest element, it is the unique max-

imal element of . Therefore, it is the supremum of the set, and
its associated hyper-ellipsoid is the Loewner–John ellipsoid of
the set of hyper-ellipsoids associated to . Therefore, there is
no need to solve problem (32). Our algorithm searches and re-
moves from the set of constraints the matrices whose hyper-el-
lipsoid is fully enclosed by other hyper-ellipsoids. In particular,
we evaluate in an iterative manner the membership in of all
elements in . We define a membership indicator vector
where and the algorithm begins by assuming
that all elements belong to , namely, , where

. Then, all the values of the elements of are evalu-
ated using the following iterative procedure.

• Step 0: Initialize and set indexes
.

• Step 1: Evaluate membership of to (if ,
terminate the algorithm):

If
set and restart Step 1
set and go to Step 2

• Step 2: Evaluate membership of to (if , set
, and go to Step 1):

If
set and restart Step 2
go to Step 3

• Step 3: Compare versus w.r.t. the Loewner ordering
[see the equation shown at the bottom of the page].

(32)

If set and go to Step 2
If set and go to Step 1
If not comparable set and go to Step 2
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Finally, once the algorithm terminates, the set will be
given by all elements such that . To compare
versus , w.r.t. to the Loewner ordering, we apply the determi-
nant test [36] to the matrix, . This test evaluates
the principal minors of and concludes on the matrix definite-
ness as follows: i) is positive definite, i.e., , , if and
only if all its leading principal minors are strictly positive, and
it is negative definite, i.e., , if its th order leading
principal minor is for odd and for even; ii) is
positive semidefinite, i.e., , if and only if all the prin-
cipal minors are non-negative, and it is negative semidefinite,
i.e., , if all the th-order principal minors are for

odd and for even; iii) is indefinite, i.e., and
are not comparable, if none of the previous conditions are satis-
fied. Since all the matrices in the set are block diagonal and
the maximum size of one block is 2 2, then every matrix is
a symmetric tridiagonal matrix, of which the leading principal
minors can be computed iteratively as
follows [37]:

for
for
for 2 < r< q.

Note that the determinant of the tridiagonal matrix is given
by , and since all the principal minors of are also
tridiagonal matrices, then their values are computed efficiently
using the above expression.

Following the ideas of [24], the issue of having a unique
supremum of a the set positive definite matrices can be over-
come by redefining the supremum as the matrix associated to the
Loewner–John ellipsoid of the set of hyperellipsoids associated
to the maximal elements of the set formed by the P-order BB
matrices. This matrix is unique in the sense that there is no
other ellipsoid with minimal volume covering the hyper-ellip-
soids associated to the set of maximal elements of . It also has
the properties of continuity, namely, it is positive definite. In the
following section we will derive the elements of the Barankin
information matrix for the problem of changes in the parame-
ters of Gaussian and Poisson distributions.

IV. CHANGE IN PARAMETERS OF GAUSSIAN AND

POISSON DISTRIBUTIONS

In this section, we apply the proposed bound for two distri-
butions generally encountered in signal processing. We analyze
these two cases in a very general way, which means that the re-
sults presented here can be applied to a wide variety of estima-
tion problems. Indeed, the parameters involved in the Gaussian

distribution (mean and covariance) and in the Poisson distribu-
tion are assumed to be a function of the parameters , which
generally represent physical parameters of interest in signal pro-
cessing. An example of change of parameters in a Gaussian dis-
tribution in the radar context is direction-of-arrival (DOA) esti-
mation. The varying cross section fluctuations are modeled with
a Swerling 0 model [38], where the DOAs are hidden in the
mean of the observations, leading, for example, to the so-called
conditional MLE [39]. On the other hand, when the emitted sig-
nals are modeled with a Swerling 1–2, the DOAs are hidden in
the covariance of the observations, leading, for example, to the
so-called unconditional MLE [40]. In the context of particle de-
tection, the Poisson distribution is generally used to model the
particle counting process; i.e., the observations and the param-
eter involved in the Poisson distribution become a function of
the DOA [41].

A. Gaussian Case

Let us assume that the vector of observations for
is modeled as , where is

a vector of known functions; is a known parameter
vector; is a zero-mean Gaussian random vector with covari-
ance matrix , with a symmetric positive definite
matrix of known functions; and is a known param-
eter vector. Then with
and are distributed as . Here, we are in-
terested in deriving the elements of the Barankin information
matrix for changes in the pdf parameters of i.e., the mean
and covariance matrix. First, we analyze the general case of
piecewise changes of the mean and covariance. Second, we de-
duce two particular cases: i) piecewise changes of mean and
constant covariance matrix, i.e., , and
ii) piecewise changes of covariance and constant mean vector,
i.e., . Note that we restrict our analysis to the
set of parameter vectors and such that the functions
in and are injective. In other words, a change in
the values of changes the values of the mean of the
distribution of . Similarly, a change in the values of im-
plies a change in values of the covariance matrix . Below,
we compute the elements of the Barankin information matrix

. Then, for each case, respectively, we derive closed-form
expressions for the elements (see Appendix D for de-
tails on their derivation) which are different from zero; namely,
we evaluate for , and for

.
1) Piecewise Changes of Mean and Covariance Ma-

trix: For using (13), we have that is given
by (33), shown at the bottom of the page, where

and
. For using (13), we have

for
(33)



5542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 11, NOVEMBER 2010

that is given by (34), shown at the bottom of the
page, where and

. For
using (17), we have that

is given as (35), shown at the bottom of the page, where

and
.

2) Piecewise Changes of Mean and Constant Covariance
Matrix: In this case ,
and is given as follows.

For , using (33) and replacing and
by , we have straightforwardly for :

(36)

For , using (34), is given as follows:

(37)

For using (35), then is given
as follows:

(38)

3) Piecewise Changes of Covariance Matrix and Constant
Mean Vector: In this case
and is given as follows.

For using (33) and replacing and by
, we have straightforwardly for :

for (39)

where .

For , using (34), is given as follows:

for (40)

where .
For using (35), then is given

as follows:

for

(41)

where .
The elements of Barankin bound for each case are obtained by

using (31), recalling that and
from (19) and (20), respectively.

B. Poisson Case

Assume that the measurements for
are distributed as a Poisson distribution

with parameter , where is a known function and
is a known parameter vector. Similarly to the Gaussian

case, we restrict our analysis to the set of parameter vectors
such that the function is injective. Therefore, we

derive closed-form expressions for the elements of the matrix
for piecewise changes of the parameter . Below,

we evaluate for and , and for
. Note that since we replace the

integral operator by the summation operator.
For becomes

(42)

For becomes

(43)

For is given as follows:

(44)

for
(34)

for
(35)
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Similarly, as in the Gaussian case, the elements of the Barankin
bound for each case are obtained by using (31) with

and .

V. NUMERICAL EXAMPLES

In this section, as an illustration, we compare the MSE be-
tween the true values of the change-point locations and their
maximum likelihood estimations with our bounds. In particular,
we first introduce the MLE of change-point locations assuming
the total number of changes is known. Then we analyze the cases
of multiple changes in i) the mean of a Gaussian distribution
with fixed variance, ii) the variance of a Gaussian assuming a
fixed mean, and iii) the mean rate of a Poisson distribution.

A. Maximum Likelihood Estimation

The MLE of is the solution to the following problem:

(45)

where and by definition. There is no known
closed-form expression for so it has to be estimated via nu-
merical computations. To solve this multidimensional optimiza-
tion problem efficiently, we apply dynamic programming (DP),
explained in detail in [42], in our context of change-point esti-
mation. The main advantage of the DP approach is that it does
not need to evaluate all the possible combinations of values for
in (45). In all our examples below, we illustrate the average MSE
performance of the MLE for 1000 Monte Carlo experiments.
We studied the performance as a function of the signal-to-noise
ratio (SNR), which is defined accordingly in each example, and
as a function of the distance between change points. Here we
chose and the number of samples . In each
example below, we set and and we ana-
lyze two scenarios for change point : In the first one, we set

such that each segment has the same number of sam-
ples, and in the second scenario, . Note that the un-
biasedness properties of the MLE have been studied in [43] for
a single change-point and for multiple change-points in [44].
The asymptotic results derived in [43] and [44] are applicable
only for the case of a Gaussian distribution with changes in
the mean. However, in the case of having a finite interval the
MLE is expected to be biased independently of the distribution.
On the other hand, it seems reasonable to assume that for large
SNR values the MLE is unbiased for a subset of the parameter
space, i.e., subintervals, and specially for change-points located
equidistant from their neighboring change-points or the interval
limits. For example, in all the examples below, the bias of the
MLE for is approximately zero for all the SNR
ranges considered in each scenario.

B. Changes in the Mean of a Gaussian Distribution

We consider the scenario of a time series with three change
points in the mean values of a Gaussian distribution with
common variance. We recall the closed-form expressions ob-
tained for computing , namely, (36) and (37), and define
the SNR for the th change point as

(46)

where is the mean vector of the th segment
and is the common covariance matrix. In our
example, and, without loss of generality, we choose

and , thus . Here, we set
, and and are set such that

. In particular,
for . Fig. 1(a) illustrates the mean values as a func-
tion of sample time for different SNR values. In Fig. 1(c), we
illustrate the MSE performance of the MLE for the change-
point vector, and the BB as a function of the SNR. In particular,

is the MSE performance of the MLE for the change-
point vector, assuming knowledge of the means and variance.

is the MSE performance of the MLE for a more
realistic case when no knowledge of the distribution param-
eters is available. The is given by the minimal-upper
bound matrix of the set computed using the algorithm
presented in Section III-D, and is the matrix in that
has the maximum trace. We illustrate the trace of and

since we are comparing the MSE performance for the
change-point vector estimates. Note that, in view of the dis-
cussion presented in Section III-D, we compute only in
this example to show that does not necessarily coincide
with supremum of the set unless . In this particular
scenario, we found that belongs to the set for SNR
values equal to and larger than 2 dB. Therefore, we have the op-
timal test points associated to the matrix
defining the Loewner-John Ellipsoid, which are presented in
Fig. 1(b). For SNR values above 2 dB, no change point is over-
lapped, therefore, each bound depends only on its corresponding
diagonal element which is equivalent to the resulting anal-
ysis of considering one change point located at , as-
suming . Moreover, it is important to mention that in
this example, is symmetric with respect to , and since
all segments have the same length, then both and are
optimal solutions for the bound on . In Fig. 1(b), we illustrate
only one optimal solution. When the 2 dB, we found
the set had several maximal elements that were not mutu-
ally comparable, thus, and does not show up in
Fig. 1(b). Finally, it can be seen that the test point approached
the true change point values as the SNR increases; i.e., tends
to as SNR increases.

In Fig. 1(d), we illustrate the and for
change-point as a function of SNR. It is note-
worthy to mention that we did not illustrate the performance for
higher SNR range in this example, since we found that for SNR
values larger than 10 dB the bound tends quickly to zero. On
the other hand, computing MSE values in these examples for
larger SNR requires a large number of Monte Carlo simulations
since the higher the SNR, the smaller the probability of an
error. For example, a single realization with an error of only 1
unit in one of the change-points, among 1000 realizations in
the Monte Carlo simulation, amounts to an MSE of 30 dB.
Similar observations hold for the example of changes in the
mean rate of a Poisson distribution.

We also analyze the MSE performance as a function of
the distance between change points for a fixed SNR value. In
Fig. 1(e), for 6 dB, we illustrate the diagonal ele-
ments of and the MSE of the MLE for the change-point
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Fig. 1. Performance analysis for estimating change-points of the mean in a Gaussian distribution: (a) Mean values as a function of sample time for different SNR
values; (b) Test points associated with the BB given by the minimal-upper bound of ���� , as a function of SNR; (c) MSE of the change-point vector using
the MLE of � and its Barankin bound given by �� , and by the matrix with maximum trace in ���� ; (d) MSE of each change-point as a function of SNR
using the MLE of � � � , and � and their corresponding Barankin bound �� �� �� � � �� � � � � �; (e) MSE of change-point vector using the MLE of � and its
Barankin bound, �� ���, as a function of the distance between � and � for ��	 � �
 [dB]; (f) MSE of each change-point and their respective �� as
a function of the distance between � and � for ��	 � � 6 [dB].

vector , assuming knowledge of the distribution parameters,
as a function of the distance between change points and .
In Fig. 1(f), we illustrate the BB and the MSE of the MLE
for each change-point. We observe that the MSE of the MLE
for and increases as the distance between change points

and decreases. Similarly, their respective BB predict the
same behavior for distances between and equal to and
larger than 10 time-units; however, for distances smaller than
10 time-units their respective bounds decrease to the same
value, as they did for distances larger than 22 time-units. This
bound behavior is expected to take place as our Barankin-type
lower bound approximation considers only one change-point
per parameter. Therefore, in our problem the test-point values
are lower and upper bounded by the adjacent change-point
parameters, which does not allow for evaluating errors, in
estimating each change-point, beyond these limits. Thus, as
the change-points get closer, the test-point domains become

limited, and the bound cannot take into account either estimated
errors given by estimates of which are larger than the true
value of , or estimated errors given by estimates of which
are lower than the true value of .

C. Changes in the Variance of a Gaussian Distribution

We consider the same scenarios as above, but with a time
series with three change points in the variance of a Gaussian
distribution and a common mean. We recall the closed-form
expressions obtained for computing , namely, (39) and
(40), and define, the SNR for the th change point as

where is the co-
variance matrix of the th segment. In our example,
and, without loss of generality, we choose , and the
mean equal to zero since the BIM does not depend on the mean,
thus . Here, we set and variances
and are set such that . In
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Fig. 2. Performance analysis for estimating change-points of the variance in a Gaussian distribution: (a) Sigma-parameter values as a function of sample time for
different SNR values; (b) Test points associated with the BB given by the minimal-upper bound of ���� , as a function of SNR; (c) MSE of the change-point
vector using the MLE of � and its Barankin bound given by �� ; (d) MSE of each change-point as a function of SNR using the MLE of � � � , and � and their
corresponding Barankin bound �� �� �� � � �� � � � � �; (e) MSE of change-point vector using the MLE of � and its Barankin bound, �� ���, as a function
of the distance between � and � for ��	 � � [dB]; (f) MSE of each change-point and their respective �� as a function of the distance between � and �

for ��	 � 4 [dB].

practice, . In Fig. 2(a), we illustrate sigma-pa-
rameter values as a function of sample time for different SNR
values. In Fig. 2(c), we illustrate the MSE performance of the
MLE for the change-point vector as a function of SNR and its
respective Barankin bound, . In particular, we illustrate
the and of for SNR ranging from 1
to 30 dB. In Fig. 2(d), we focus on SNR ranging between 1 to
10 dB, and we illustrate the MSE for change-point estimate of

, and , using the MLE and their respective bounds given
by the diagonal elements of . In this scenario be-
longs to set for SNR values larger than 4 dB, and the MSE
of the MLE slowly approaches the BB as the SNR increases. In
this example, the BB is the same for all change-points for SNR
values above 2 dB, and for all the SNR ranges illustrated, the
maximum differences between the BB and both the
and are approximately 7 and 17 dB, respectively.
For SNR values lower than 2 dB, the is greater than

the MSE of the MLE because the Barankin bound derivation
does not consider the set of admissible values of the estimator.
In our example, the MLE computation restricts the search to
the range between 1 and , and thus the MLE variance has
an upper limit, which the BB computation does not consider.
Moreover, the BB assumes that the estimator is unbiased at
the test-points; thus for low SNR the comparison against the
MLE’s MSE is inappropriate because the optimal test-points
tend to go to the extreme of the intervals associated to each
change-point causing some bias. Fig. 2(b) illustrates the optimal
test points associated to the matrix . It
can be seen that for all the SNR range there are no overlaps
between test points and, as in the previous example, all test
points approach to 1 or , namely, they are close to the true
change-point values as SNR increases. Therefore, for large SNR
values , which tends to
0 as .
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Fig. 3. Performance analysis for estimating change-points in the mean rate of a Poisson distribution: (a) Mean-rate-values as a function of sample time for different
SNR values; (b) Test points associated with the BB given by the minimal-upper bound of ���� , as a function of SNR; (c) MSE of the change-point vector
using the MLE of � and its Barankin bound given by �� ; (d) MSE of each change-point as a function of SNR using the MLE of � � � , and � and their
corresponding Barankin bound �� �� �� � � �� � � � � �; (e) MSE of change-point vector using the MLE of � and its Barankin bound, �� ���, as a function
of the distance between � and � for ��	 � � 6 [dB]; (f) MSE of each change-point and their respective �� as a function of the distance between � and
� for ��	 � �6 [dB].

In Fig. 2(e) and (f), for 4 dB, we illustrate the BB
and the MSE of the MLE for and , assuming knowl-
edge of the distribution parameters, as a function of the distance
between change points and . Above 10 units, the BB for
all the change-points remains the same for distances between
change-points and . The BB for increases as the distance
between change-points and increases from zero to 10 units.
As in the previous example, the bound in this range is overly op-
timistic since the test-point domains become limited.

D. Changes in the Mean Rate of a Poisson Distribution

Now we consider a time series with three change points in the
mean rate of a Poisson distribution. As in the previous examples,
we recall the closed-form expressions for , i.e., (42) and
(43). Then we define the SNR for the th change point detector
as where is

the mean rate of the th segment. Here, without loss of gen-
erality, we set . The mean rate is set to ,
and the mean rates and, are set such that

. In practice, .
In Fig. 3(a), we illustrate the mean-rate-values as a function
of sample time for different SNR values. Fig. 3(c) and (d) il-
lustrates the and performance for the
change-point vector and change points , and , respec-
tively. In this case, the MSE values, as well as the bounds for

, and , are not the same for the same SNR values. In fact,
it can be seen that the MSE values for are lower than the MSE
values for and these last are lower than the MSE values for

. This difference in performance is due to the fact that in our
example the difference between the means of contiguous seg-
ments are not the same, which is a direct consequence of the
definition used for SNR. In practice, for any SNR, the differ-
ences between the means for segments and
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is larger than the difference between the means for segments
and . In Fig. 3(b), we illustrate the test

points associated to the matrix . As in the previous ex-
amples, the test points tend to the true change-point values as
the SNR increases. Finally, in Fig. 3(e) and (f), we illustrate the
MSE performance, assuming known mean rates, as a function
of the distance between change points for 6 dB. The
bounds for change-point and are constant in all the illus-
trated range, though, the MSE of the MLE for slightly varies
as approaches . As we discussed in the previous examples,
the bound for is overly optimistic for small distances between

and , due to the constrained test-point domain.

VI. CONCLUSION

We investigated a simplified version of the Barankin bound
on multiple change-point estimation. The approximate Barankin
information matrix was spelled, revealing an interesting tridi-
agonal structure, meaning that the estimation of one change
point is naturally perturbed by its two neighbors. Moreover, the
Barankin information matrix can be reduced to a block diag-
onal structure leading to closed-form for the elements of its in-
verse. The main limitation posed by this HCR approximation
is a reduced search space for the BIM that leads to a loose
Barankin bound. We also discussed the existence and compu-
tation of the supremum with respect to the Loewner partial or-
dering, on the finite set of candidate BB solutions. To overcome
this problem, we computed a suitable minimal-upper bound to
this set given by the matrix associated with the Loewner–John
ellipsoid of the set of hyper-ellipsoids associated to each max-
imal element of the set of candidate bound matrices. Two im-
portant distributions in signal and image processing were in-
vestigated, the Gaussian case and the Poisson case, for which
we obtained closed-form expressions for all the elements of the
Barankin information matrix. Finally, we illustrated our anal-
ysis by presenting various simulation results. In a future work,
we will analyze Barankin-type lower bounds, considering all
distribution parameters in addition to the multiple change-point
localizations.

APPENDIX

A. Proof of Lemma 1

Proof: We need to proof that for all with
if . Since is pd and is psd,

there exist a non-singular matrix such that

and

Thus, and and
. Let

because is not singular for ; therefore, our
problem is equivalent to analyze the positiveness of

, for . Since
. Hence, if , then , for

thus and . On the other hand, if

we can always find a vector such that or ,
thus and are not mutually comparable.

B. Computing Diagonal Elements of

For , (12) becomes

After some straightforward simplifications, we have that

Similar analysis can be applied to solve for .

C. Computing Non-Diagonal Elements of

For and , (14) becomes

The cases , and
are solved using same approach as above. For

the overlapping case, i.e., , is more difficult.
Replacing and keeping in mind that and

, (14) becomes

where .
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D. Computing the Elements of for Changes in Mean and
Covariance Matrix of Gaussian Distribution

In this case , and the data likelihood is given
as follows:

For using (13), we have that is given as follows:

where and
. The

integral above has a finite value for positive definite (pd).
Hence, and after some straightforward algebraic derivations,
we obtain the expression in (33). The case is obtained
proceeding similarly as above. For
using (17), we have that is given as follows:

where
and {

. Hence, and after some straight-
forward algebraic derivations, we obtain the expression in (35).
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