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Statistical Resolution Limit of the Uniform Linear
Cocentered Orthogonal Loop and Dipole Array
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Abstract—Among the family of polarization sensitive arrays, we can find
the so-called cocentered orthogonal loop and dipole uniform linear array
(COLD-ULA). The COLD-ULA exhibits some interesting properties, e.g.,
the insensibility of the polarization vector with respect to the source lo-
calization in the plan of the array. In this correspondence, we derive the
statistical resolution limit (SRL) characterizing the minimal separation,
in terms of direction-of-arrivals, to resolve two closely spaced known po-
larized sources impinging on a COLD-ULA. Toward this end, nonmatrix
closed form expressions of the deterministic Cramér—-Rao bound (CRB) are
derived and thus, the SRL is deduced. A comparison between the SRL of the
COLD-ULA and the classical ULA are given. Particularly, it is shown that,
in the case of orthogonal known signal sources, the SRL of the COLD-ULA
is equal to the SRL of the ULA, meaning that it is not a function of polar-
ization parameters. Furthermore, due to the derived SRL, it is shown that,
under some general conditions, the SRL of the COLD-ULA is smaller than
the one of the ULA.

Index Terms—Cocentered orthogonal loop and dipole (COLD) array, po-
larized sources localization, statistical resolution limit.

I. INTRODUCTION

Polarized sources localization by an array of sensors is an impor-
tant topic with a large number of applications especially in wireless
communication and seismology [1]. Particularly, the context of po-
larized sources has been investigated in the literature and several
algorithms, to estimate the localization and polarization parameters,
have been proposed [1]-[4]. Among the different types of arrays, the
crossed-dipole array (constituted by several couple of dipoles) is sen-
sitive to the source’s polarization and thus, is adequate to this context.
In particular, the cocentered orthogonal loop and dipole uniform linear
array (COLD-ULA) exhibits some interesting properties [5], [6], as
for instance, the insensibility of the polarization vector with respect to
the source localization in the plan of the array or, the constant norm
of the polarization vector. Note that these properties are not shared
by the standard crossed-dipole array [5]. The optimal performance in
terms of mean square error by way of the Cramér—Rao bound (CRB)
for the COLD-ULA array has already been investigated in [5], [6].
In [5], matrix expressions of the CRB was given, whereas, in [6] the
asymptotic (in terms of sensors) CRB was derived. However, to the
best of our knowledge, no works has been done on the resolvability of
closely polarized sources.
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A common tool to characterize the resolvability between two signals
is the so-called statistical resolution limit (SRL). The SRL [7]-[19],
defined as the minimal separation between two signals in terms of the
parameter of interest, is a challenging problem and an essential tool to
quantify estimator performance.

One can find in the literature three main approaches to characterize
the SRL:

i) The first is based on the concept of mean null spectrum and is
relevant to a specific high-resolution algorithm [7], [8].

ii) The second approach is based on a hypothesis test using the gen-
eralized likelihood ratio test (GLRT) [9]-[11] or the Bayesian
approach [12].

iii) The third method is based on the estimation accuracy concept
[13]-[18].

In this context, one can distinguish two main criteria. The first one was
introduced by Lee in [13] and states that two signals are resolvable,
w.r.t. the parameter of interest w1 and wo, if the maximum standard
deviation, of w1 and w2, is less than half the difference between wi and
w>. However, one can note that the Lee criterion ignores the coupling
between the parameters of interest [19]. To take into account this ef-
fect, Smith [16], proposed the second following criterion based on the
CRB: two signals are resolvable if the separation between w1 and w2,
is less than the standard deviation of the separation estimation. Conse-
quently, the SRL in the Smith sense is defined as the separation between
the parameters of interest that is equal to the standard deviation of the
separation.

To the best of our knowledge, all the works related to the resolv-
ability of closely spaced sources concern the case of non-polarized
sources [7]-[9], [11]-[18], and no studies/results are available con-
cerning the case of polarized sources. The goal of this correspondence
is to fill this lack.

Since the mean null spectrum approach is relevant to a specific high-
resolution algorithm, in this correspondence we focus mainly on the
SRL derivation for known polarized sources in the Smith sense. Fur-
thermore, since it exists a relationship between the SRL based on the
Smith criterion and the SRL based on a hypothesis test [11] in the
asymptotic case, the SRL based on a hypothesis test is deduced and
compared to the derived SRL based on the Smith criterion.

Consequently, in this correspondence, we derive and analyze the
minimum direction-of-arrivals (DOA) separation between two known
polarized sources that allows a correct sources resolvability for the
COLD-ULA in the Smith sense. As a by product, a closed-form expres-
sion of the true (non-asymptotic) deterministic CRB is given (which is
not available in the literature). Finally, the SRL using an ULA is derived
and compared to the SRL using a COLD-ULA. It is shown that, in the
case of orthogonal known signal sources, the SRL is not a function
of polarization parameters (i.e., the SRL of the COLD-ULA is equal
to the SRL of the ULA). Furthermore, in the case of non-orthogonal
known signal sources and under some general conditions, the SRL of
the COLD-ULA is shown to be smaller than the one of the ULA.

II. MODEL SETUP

Consider a COLD-ULA made from L COLD sensors (a COLD
sensor is formed by a loop and a dipole [5]) with interelement spacing
d that receives a signal emitted by 3 radiating far-field and narrow-
band sources. Assuming that the array and the incident signals are
coplanar [5], i.e., the elevation is fixed to 7/2, the observed signal
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model on the (' COLD sensor at the " snapshot is given by! [2],
[5]ze(t) = [100p(t) ’rdipolc(f)]T = 2;7;121 Qm (f)um(«"iéwm +u(t),
where { = 0...L —1andt = 1... N, in which N is the number
of snapshots. w,, = (27/A)dsin(f,,) is the spatial phase factor
in which #,, and \ are the azimuth of the m*™ source and the
wavelength, respectively. The time-varying source is modelled by?
A () = am e (27 fot+om (1) in which a,, is the non-zero real ampli-
tude, ¢, (¥) is the time-varying modulating phase and f, denotes the
carrier frequency of the incident wave. The additive noise is denoted
by v¢(t) = [V1oop(t) vaipole(t)]” . The polarization state vector u,, is
given by
|

where p., € [0,7/2] and ¢,, € [—m, 7] are the polarization state
parameters. From a modelling point of view, each dipole in the array is
assumed to be a short dipole (w.r.t. the distance d) with the same length
Lq and each loop is assumed to be a short loop (w.r.t. the distance
d) with the same area A,;. Under these assumptions, the total output
vector received by the COLD-ULA for the t* snapshot can be written
as follows:

2w 451 COS(pm)
Lsd sin(py, )eitm

v =[5 . alm)]

M

> An(Hdn + [0 (1)

m=1

.
i)

where the (2L) X L matrix A, (t) = I, ® (am(¢)umn) in which
the operator & stands for the Kronecker product. The steering vector
is defined by d,,, = [1 e™™ ... e"‘:L_l)“""]T, Since the problem ad-
dressed herein is to derive the SRL based on the CRB for the proposed
model, we first start by deriving the CRB for (1) in the case of A = 2
sources.

III. DETERMINISTIC CRAMER-RAO BOUND DERIVATION

In the remaining of the correspondence, we will use the following
assumptions:

Al. The noise is assumed to be a complex circular white Gaussian
random noise with zero-mean and unknown variance ¢ 2. In ad-
dition, it is assumed to be both temporally and spatially uncor-
related.

A2. The sources are assumed to be known and deterministic (see,
e.g., [20]-[24]). The unknown parameter vector is then given
by} € = [w1 ws 0?]"

A3. Furthermore, from a modelling point of view, we can assume,
without loss of generality [5], that Lsq = 2mAg /A = 1.

Using Al, the joint probablhty densny function of the full obser-

vation vector ¥ = [y7 (1) ... yT (N )] given £ can be written as
follows:

=1
032 5 (x—m) 7 (x—n)

p(xl§) =

(Tl'0'2 )ZI\’vL

where p = Y0 [di A (D)7 .. dLAL(N)T 1" Let B{(& -
€)(€ — €)'} be the covariance matrix of an unbiased estimator of

10ne should note that due to the nature of the COLD array sensors, one has
twice the number of measurements w.r.t. a ULA array with the same number of
sensors and the same array’s aperture.

2Note that this source model is commonly used in many digital communica-
tion systems (see [S] and references therein).

3Note that the state parameter vector is assumed to be known. However, this
assumption is not severe (since the numerical simulations part).
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&, denoted by é . The covariance inequality principle states that under
quite general/weak conditions MSE([£];) = F{([€]: — [€]:)*} >
CRB([¢];), where CRB([¢];) = [FIM™'(¢)];; in which FIM(¢)
denotes the Fisher information matrix (FIM) regarding to the vector
parameter &.

Since we are working with a Gaussian observation model (assump-
tion A1), the 7*2, j' element of the FIM for the parameter vector £ can
be written as [25]

"
[FIM(£)]: , = NL 86? 902 R{@p op }

ot Olgl: gl o) oLel

where (7,7) € {1,2,3}2. [€]: and R{z} denote the i*" element of &
and the real part of z, respectively. Then, the FIM for the proposed
model is block-diagonal

2 | F 0
- 2[5 0 .
202

=NR {7 N (umupde dp+1xmp)} (m,p) € {1,2}?

3)
in which D = diag{0,...,L — 1}, 7x = (1/N) X0, ai(t)as(t)
and

au ou 8 Ou
Kpp = 2o P gt g — i 229" D4, uw?dfDd,.
% ya 64.)7,; 8w'p m 8&» m + W p m P

Using the fact that the polarization state vector of a COLD

array is not a function of the direction parameter, thus
ou,, /0w, = 0. Consequently K,,, = 0 and (3) be-
comes [Fl..p = NR{ryuflu,dD?d,}. Furthermore,
as [[um|* = 1, one obtains [F]iy = Naia for i = 1,
2 where « = (1/6)(L — 1)L(2L — 1). The cross terms

are given by [Fli2 = [Flq = N'é)?{rNu{{uy;} where
ullu, = cos(p1) cos(p2) + sin(p1) sin(pg)e’(wfm) and

L—1 L—1
i Y . | <(COLD)
n= ZEQE—L(vul—wg)f — Zé?e—lsgn(wl—u,g)ﬁw ¢ (4)
=0 =0
in which 640" = |w1r — we2| and sgn(z) = z/|z| for z # 0.

To simplify the derivations and without loss of generality, we choose
w1 > ws in the following. Consequently, the inverse of the FIM is
given by

1 N

_ —R {7’N u{{ugn}
" det{F}

(l/f(}’,

2
aso

—-R {rNullquzn} ®)

where det{F} = N?(afa3a? — R2{ryut uzn}). Finally, replacing
(2) and (5) into CRB(§) = FIM !(£), the CRBs (see Fig. 1) are
given by

2 2
A —1 a as o
'RB(wi) =[F =
CRB(w1) =[F™ i1 ON wZala? — R {ryallman] (6)
2
o)y Ay, 4 aia
CR,B(WZ) [F ]2,2 IN a,f(lf a2 — R2 {erlllqllzn} (7)
/ 2 R L H
CRB(wi,ws) 2[F yo = =2 {rxui’uon} ®

2N a?aia? — R2 {rnulfuan}’
IV. STATISTICAL RESOLUTION LIMIT

This section is devoted to the derivation of the SRL of the COLD-
ULA. Taking advantage of the previously derived CRBs (6), (7), and
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Fig. 1. The CRB for the COLD array and the ULA with N = 100 snapshots

and L = 25 sensors. One can notice that for a small separation the CRB for
the ULA goes to infinity faster than the CRB for the COLD array. This can be
explained by the additional knowledge about polarization parameters in the case
of the COLD array.

(8), the SRL in the Smith sense is derived in Section IV-A. Then, the
SRL based on a hypothesis test is deduced in Section IV-B. One should
note that the SRL of the ULA according to the model (1) is not derived
in the literature. This latter can be derived following the same steps as
in Section IV-A leading to

aj +az +9R{’1\}
7]\7}

S(ULA) _

ek

aa—

A. Statistical Resolution Limit for a COLD-ULA

Let 6(79%P) denoting the SRL of COLD-ULA according to the
model (1). Thus, one obtains (see [19])

CRB( (Oom)) CRB(w1) 4+ CRB(w2) — 2CRB(w1, w2). (9)

Consequently, the SRL# is defined as the minimal separation, denoted

5L00TD) , which resolves the following implicit equation:

6&}COLD) — . /CRB ((SS)GOLD)) — f ((ﬁcor‘n)) -4 (10)
where . )
F(SOOM)Y = (2/02)det{F} ((5&'0”)) + 2CRB(M,WQ)) and

A = (a} 4 a3)a. In the following, (10) is solved to obtain the desired
SRL for the orthogonal and non-orthogonal signal sources cases.

1) The Orthogonal Signal Sources Case: In the case of orthogonal
signal sources [20], one has rn = (1/N) Ztmzl aj(t)az(t) = 0. This
implies that the FIM is diagonal (i.e., the parameters of interest are
decoupled). Thus, replacing CRB(w1,w2) = 0 and r 5 = 0 into (10),
the SRL in the orthogonal signal sources case, denoted by 5O =0) ,
is given by

(SS"OT‘D_O) _

1)

It can be readily checked that the SRL is not a function of the polar-
ization parameters. Consequently, in comparison to the classical ULA

4From (9), one should note that the SRL using the Smith criterion [16] takes
into account the coupling between the parameters of interest unlike the Lee cri-
terion [13], see Fig. 2 (right).

p(x) = 2NBz* + 4NBBu«® + 2N (B” —
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array, the use of the COLD array cannot improve the resolvability of
the sources in this scenario. Moreover, for equipowered sources (¢; =
a2 = a), one obtains

§(COLD-0) _ 1

vV NaSNR

where SNR = a”?/o?. Furthermore, for equipowered sources and a
large number of sensors (L > 1), the SRL can be approximated by
sLCOMP=0) ~ /3/(N'/2SNR'/2L?/?). Note that, in this case, the
SRL is proportional to the inverse square root of the number of snap-
shots, to the inverse square root of the SNR and to inverse of L\/f .
Also note that, the SRL obtained here is qualitatively consistent with
the SRL derived in [12], [17] in the case of a classical ULA array.

2) The Non-Orthogonal Signal Sources Case: The analysis in
the general case of non-orthogonal signal sources (i.e., rx # 0)
is more complex and needs some approximations. Considering

12)

the second-order Taylor expansion of the functional 75 (see
(4)) around §L0TPN T = 0, one obtains, for LT« 1,
no~ £2(1 + 8L a + i385 where
g = 5_01 £ = (1/4)(L — 1)>L* (note that this approxima-

tion is not severe, since numerical simulation shows that the SRL
based on the second-order Taylor expansion of 7 is close, and in a
good agreement with the exact SRL; see Fig. 3). One can note that
expression (10), for non-orthogonal signal sources, becomes, for

L5 o 1
(6(COLD))2 _ o> A+2B-25°""pB (13)
« 2N o _ (B _ 65}COLD)B)2

where B = aR{ryui’u:}, B = 33 {ryvuf’uz} and C = ajaza in
which ${z} denote the imaginary part of z. Expression (13) is in fact
the roots of the following polynomial

)
—20°Ba+ 06%(A+2B) (14)

— g(cOLD)
where & = 0.

Resolving this polynomlal can be facilitated by noticing that, if
5L7°P) is a root then —8.7°"? is also a root.s Consequently, ()
can be rewritten as p(x) = (x A )z + sLOm T)))(
s1)(z — s2), where 51 and s are the unwanted roots. From the latter
expression and (14), one obtains

81 + 590 = 2;7VB
(coLpy)\? _ (B2-c?)
51892 — (5,0 ) = B

2
(&(JCOLD)) (s1 +50) = ,52

) 2 5
(COLD “(A+2B
B (éi’ )) s152 = SRR

15s)

Using the second and last equation of (15) one obtains the SRL as
the root (we keep only the positive root whatever the sign of B) of
ANB(5LOM) 4 aN(B? — ¢2)(6L°°") 162 (A + 2B) = 0.
Consequently,

c* - B? Ly gge (A+2B) B
2B (B2 —C?2)* N )’

_ SIndeed, using the change variable formula (see [26] p. 45) w.r.t.

6 = —6(COLD)  the Jacobian matrix J is reduced to a scalar J = —1. Thus,

CRB(—$(COD)) = CRB(4) = JECRB(H(COMP)) SCRB(3(COT)).

Consequently, if 8(COLD) s a root of (§(COLP))? = CRB(6(COLP)) then
—6(COLD) 5 also a root.

(6£}COLD))2 _
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Fig. 2. Left: The SRL using a COLD and a cocentered crossed-dipole (CCD) [5]. One notices that the SRL of a CCD array is in a good agreement with the SRL of
a COLD array. However, the SRL closed form expression of the COLD array is easier to derive since the COLD array exhibits some interesting properties, as for
instance, the insensibility of the polarization vector to the source localization in the plan of the array and the constant norm of the polarization vector. Right: The
SRL based on the Smith and Lee criterion. One can notice that in the case of orthogonal signal sources, the SRL based on the Smith and Lee criterion coincides
(upon a normalization factor). However, in the general case (i.e., not orthogonal signal sources) the Lee criterion, unlike the Smith criterion, ignores the coupling

terms between the parameters of interest.
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1
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. SRL based on detection theory (Pd,P,a)=(0,34‘0 25)

d fa

SRL based on detection theory (Pd,P,a)=(0.49,0 31)

© SRL based on detection theory (PP, )=(0.38,0.1) l

0.1

0.25 03
2
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1 I I I 1
0.15 0.2 0.35 0.4 0.45 05

Fig.3. Left: lllustration of the desired roots of the polynomials p» (), p5 (), p3(2) and p4(z). Right: Comparison with literature results: The SRL versus o2 for
N = 100: the approximated SRL based on (16) and (17) is in good agreement with the exact SRL (i.e., the numerical solution of (10) without any approximation).
This validate the closed-form expressions given in (16) and (17). Furthermore, one can notice that, for example, for P; = 0.37 and P, = 0.1 the SRL based on
the SRL (16) and (17) is almost equal to the SRL based on a hypothesis test [11] derived in the asymptotic case. From the case P; = 0.49 and Py, = 0.3 or/and
P, = 0.32 and P;, = 0.1, one can notice the influence of the translation factor p on the SRL.

One should note that under realistic conditions 5579TP) exists since

%% is o( 5775 ) (e, |(jg;‘j—"’cfj>2)%| < 1). Consequently, the
desired SRL is given by (we discard the negative root) (see (16), shown
at the bottom of the page). Note that, unlike the orthogonal signal
sources case, the SRL depends on the state vector parameter.

Remark 1: Note that the latter formula is valid if B # 0.

When B = 0, the roots of p(x) (which become the roots of

p2(x) 2 2N(B* — C*a? + o*(A + 2B)) are given by
2

2? = 2_;(’(34%2012). The real root exists if in particular C* — B* > 0

and A + 2B > 0. Since |R{zy}| < |zy| < |z||y|, where |.|

denotes the absolute value of a real number or the modulus
of a complex number, then, for a fixed value of ¢, one has
|§R{ei(¢2(t)f¢1(t))u{1u2}| < |6j(¢2(t)7¢1(t))||u€iu2| < 1.
Thus, |\R{Zt’\’:1 Ci(¢2(t)*¢1(t))u{{u2}| <
N W(a(t) =01 (1) HT - rajta3
Do | R{ert et u'u} < N L N S22 Consequently,
A > —2B is satisfied. On the other hand, since S{v’Awu{{uz} =0,
thus, |R{rnui u:}| |rn|lufus|. Assuming different
polarization state vectors, i.e., (p1,41) # (p2,t2), one obtains
rvlfufu| < jry| < (aray/N) T, |22 07O = apa,.
Thus, B? < C?. Finally, one concludes that the root of (14) in

§(COLD) _

C2 — B2
2B

1—\/1—202

(A+2B)

(B2 =)

B
N

2 .
a?a3 — R2 {ryufus}
=
2 H
283 {rnvufuz}

1_%_

20285 {ryvul’ua} (@2 + a2) + 2R {ryul’us})

aN

(R2 {ryulfus} — a?a

2
2

)2

).

(16)
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Fig. 4. The SRL of the COLD-ULA with (left) N = 40 snapshots and L = 5 sensors, and (right) N =
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100 snapshots and L = 10 sensors. Note that the SRL

using the assumption of known state parameter vector is almost identical to the SRL of unknown state parameter vector.

the case 3{ryuius} = 0 exists and is given by (we discard the
negative root)

a? —I—az + 2R {ryul! uz}

6(( OLJ_))
RZ {ll\rul ll)JL

= v \/ a
Remark 2: From Fig. 3 (left), one can notice that the desired roots of
palx),p3(e) 2 4NBBa*+2N(B*—-C?)2®—20° Ba+c?(A+2B),
pa(x) and ph(z) 2 2N(B? — CZ)JJ — 20%Ba + 0% (A + 2B) are
almost identical for various values of 2. Indeed, this is expected since
the desired roots, corresponding to the SRL, are small (i.e., 500D «
1). Furthermore, for a sufficient number of sensors, the coefficient cor-
responding to the fourth, third and first degree of the polynomial p(x)
are small (ie., 2NB ~ O(1), 4ANBB ~ O(1/N) and 26°B ~
O(1/N) whereas 2N (B* — C?) ~ O(N)).

Remark 3: On the other hand, since | %

Ll(l

2| « 1, the second-
(A+2B) B
(B2-C2)2 N

UJ‘

order Taylor expansion of (16) around = () gives

a? + a2 + 2R {ryuflus}

slcoLp) _
R2 {ryuffu,}

© V2N« \/

which is the same expression as in (17). Furthermore, for orthogonal
signal sources, one obtains (11). Consequently, (17) unifies the dif-
ferent cases of the SRL derivation results.

Remark 4: Finally, using (17) and for equipowered sources (i.e.,
a1 = as = a), one obtains

(18)

aal —

14+ R {Fyufu,}

vV NaSNR \/1 - R2 {Fyuffu,}

in which 7x = (1/N) 3 e/(?2(0=21(0) Note that, the SRL ob-
tained in (19) is qualitatively consistent with the SRL derived in [12]
and [17] in the case of a classical ULA array.

Remark 5: The polarization state vector of a COLD array is not
function of the direction parameter (i.e., O, /dw,, = 0 form =
1, 2). Remark that this is not the case for Cocentered Crossed-Dipole
(CCD) antenna. This nice property of the COLD array allows to greatly
simplify the analysis of the SRL, see Fig. 2 (left) for a comparison
between the CCD-ULA and the COLD-ULA SRL.

Furthermore, from A2, one can note that the state parameter vector
is assumed to be known. However, this assumption is not severe, since
numerical simulations show that the SRL of a known state parameter
vector is close to the SRL of a unknown state parameter vector (even
for a low number of sensors L = 5 and/or a low number of snapshots
N = 40); see Fig. 4.

é(COLD) (19)

B. SRL Based on a Hypothesis Test

Another approach to derive the SRL is based on a hypothesis test. In
this Subsection, we show that the results of [11] in the case of non-po-
larized sources can be extended to the polarized sources case. Indeed,
using a binary hypothesis test and the same method as in [11], the
asymptotic (in terms of snapshots) SRL based on a hypothesis test is
given as the root of (proof: see the Appendix)

6defectim1 = pV CRB(édetection)-

The so-called translation factor, p, is determined numerically, for a

given probability of detection P, and a given probability of false alarm

Pr,, as the root of Q;,IQ(P)(Pd) = Q;;(Pfa). In which Q;;() and
'3 3 3

Q_,Q( )( ) denote the inverse of the right tail probability of the cen-

tral chi-squared pdf y3 and the noncentral chi-squared pdf x 2( ),
respectively).

Remark 6: The hypothesis test used to derive (20) is a binary
one-sided test and the MLE used is an unconstrained estimator
(see the Appendix), thus, one can deduce that the GLRT, used to
derive the asymptotic SRL, is [27] 1) asymptotically uniformly most
powerful (UMP) test among all invariant statistical tests, and 2) has
asymptotic constant false-alarm rate (CFAR).

Fig. 3 (right) shows that the derived SRL (17) is in agreement, with
respect to the translation factor, with the extension of the SRL based
on a UMP and CFAR hypothesis test in the asymptotic case, which as-
sesses the validity of our results. In addition, this figure shows that the
derived SRL is tight w.r.t. the exact SRL (i.e., the numerical solution of
(10) without any approximation). Furthermore, Fig. 3 (right) assesses
remark 2 and 3 since the SRL (17) derived using p2 () is almost iden-
tical to the SRL (16) derived using p(z).

In the following section, a comparison between the SRL of two po-
larized sources impinging on a COLD-ULA and on an ULA, is done.

(20)

V. COMPARISON BETWEEN THE STATISTICAL RESOLUTION LIMIT OF A
COLD-ULA AND AN ULA AND NUMERICAL ANALYSIS

Consider two radiating far-field and narrowband sources observed
by a classical ULA of L sensors with interelement spacing d [25]. The
array and the emitted signals are coplanar. Following the same steps
leading to §LOTP=0) , one obtains after some algebra calculations the
SRL of the ULA denoted by 5TA=9)  The derivations are not re-
ported here since they are similar to the ones presented for the COLD
array. As in Section IV, we detail the orthogonal and non-orthogonal
signal sources case.
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Fig.5. D(rr,ul u,) versus the polarization state parameters p and ¢; a1 = 2, a2 = 3,ry = (1+1)/20 where N = 20. (Left) po = 85° and (right) p> = 5°.

A. Comparison in the Orthogonal Signal Sources Case

In the case where the signal sources are orthogonal (i.e., rny = 0
[20]), one obtains (after calculus) 65}”“\70) = 6&OOLD70) meaning
that the COLD-ULA and the classical ULA have the same resolvability
capacity.

B. Comparison in the Non-Orthogonal Signal Sources Case

In the following we focus on the SRL given by (18) (see remark 3).
After calculus, one obtains the SRL of the ULA

suLay _ 9 (af +a3) + Q?R{”‘N}' Q1)
“ V2Na || afay — R {rn}
Thus, from (17) and (21), one can check that
50D < sUTA) i Rl > a%{rNu{’uQ}. 22)
As R{ryufus} = R{ra}R{ufuz} — I{ra}3{ufuz} and

R{u’us} < 1, condition (22) is satisfied for 3{rn} = 0 or/and
S{ufu,} = 0. Consequently, we have SLOTD)  5LTEA) for the
following cases:

Cl. if the signals are real and positive, i.e., S{rx } = 0 or with the

same phase, i.e., ¢1(t) = ¢2(1), Vt;

C2. ifdy = oo, ie., S{ufus} = 0;

C3. ifp;y =0orps = 0,ie, J{ufu} = 0.

Besides C1., C2., and C3., in Fig. 5 we plot D(rz,ulfu,) =
R{rn} — R{ryuf’us} versus the polarization state parameters p and
1. Consequently, from (22) if D > 0 thus LOOMD) gAY Fig. 5
suggests that generally 5LEOMD)  5(UEA) yhile 57OV 5 (VM)
only for a small region (which corresponds to the part of the plot that
is under the horizontal plan). This means that generally, the SRL of
the COLD-ULA is smaller than the one for the ULA.

VI. CONCLUSION

In this correspondence, we derived the deterministic CRB in a non-
matrix closed form expression for two polarized far-field time-varying
narrowband known sources observed by a COLD-ULA. Taking advan-
tage of these expressions, we deduced the SRL for the COLD-ULA
which was compared to the SRL of the ULA. We noticed that, sur-
prisingly, in the case where the signal sources are orthogonal, the SRL
of the COLD-ULA is equal to the SRL of the ULA, meaning that
it is not a function of polarization parameters. Furthermore, for non-
orthogonal signal sources, we have given three sufficient and neces-
sary conditions such that the SRL of the COLD-ULA is less than the
SRL of the ULA. By analytical expressions and numerical simulations

we have shown that the SRL of the ULA is less than the SRL of the
COLD-ULA only for few cases, meaning that generally the perfor-
mance of the COLD-ULA is better than the performance of the ULA.
Note that an interesting work could be to apply the proposed method
in the case of Gaussian sources and to compare it to [17, eq.(9)].

APPENDIX

Let us consider the following binary hypothesis test where Ho and
'H1 represent the presence of one signal and the presence of two signals,
respectively. Consequently, following the same line as in [11], one can
formulate the hypothesis test, as a simple one-sided binary hypothesis

test as follows:
Ho :
Hy -

where ddetection denotes the SRL based on a hypothesis test such that
Sdetection = |w1 — we|. To derive the SRL based on a hypothesis test,
we consider the GLRT [27]:

6detection =0

23
6(]eterﬁ(m > 0 ( )

p(y|(§detection7&1,7—(1)
La(y) = A
w) p(y|00, Ho)

H !
lg¢

> (24)

where ddetection, 61 and 6o denote the maximum likelihood esti-
mates (MLE) of 4ctection under Hy, the MLE of ¢ under H; and
the MLE of oo under Ho, respectively, in which ¢’ denotes the
test threshold (the central spatial phase factor is implicitly assumed
unknown). From (24), one obtains

Ta(y) = LnLa(y) > ¢ = Lng'. (25)
Deriving and analyzing the SRL from (25) seems to be hard and even
intractable in some cases (especially due to the derivation of ddetection )-
Consequently, in the following we consider the asymptotic case. In [27]
it has been proved that, for a large number of snapshots, the statistic
T (y) in (25) follows:

under Ho

2
; X2
T ~ . 26
c(y) {X'j(/") under H (26)

where x5 and \’ j (p") denote the central chi-square pdf and the noncen-
tral chi-square pdf both with two degrees of freedom. The noncentral
parameter p’ is given by [27]

p, = Sfletection (CRB(édetGCtiOD))_l . (27)

Since we consider the asymptotic case ddetection = Odetection , thus (27)
P ; ;
becomes 8jciection = £ CRB(8detection ). Consequently, dqetection =
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£/ CRB(8dctection ) Where /p = p' represents the so-called transla-
tion factor [11] which is determined due to the probability of detection
P, and the probability of false alarm P, as follows: Pz, = Q)\g (¢) and
P = Q,K,g(p2)<c) wherS Q‘xﬁ(') and Qvg(fﬂ)(-) denote the right tail
probability of \3 and y';(p?), respectively. This conclude the proof.
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A Barankin-Type Bound on Direction Estimation Using
Acoustic Sensor Arrays

Tao Li, Joseph Tabrikian, and Arye Nehorai

Abstract—We derive a Barankin-type bound (BTB) on the mean-square
error (MSE) in estimating the directions of arrival (DOAs) of far-field
sources using acoustic sensor arrays. We consider narrowband and
wideband deterministic source signals, and scalar or vector sensors. Our
results provide an approximation to the threshold of the signal-to-noise
ratio (SNR) below which the performance of the maximum likelihood esti-
mation (MLE) degrades rapidly. For narrowband DOA estimation using
uniform linear vector-sensor arrays, we show that this threshold increases
with the distance between the sensors. As a result, for medium SNR values
the performance does not necessarily improve with this distance.

Index Terms—Acoustic sensor array, acoustic vector sensor, Barankin
bound, direction of arrival estimation, threshold SNR.

1. INTRODUCTION

The Barankin bound [1]-[4] is a useful tool in estimation
problems for predicting the threshold region of signal-to-noise
ratio (SNR) [5]-[8], below which the accuracy of the maximum
likelihood estimation (MLE) degrades rapidly. Identification of the
threshold region enables to determine the operation conditions, such
as observation time and transmission power, to obtain a desired
performance.

In the recent years, many works have been carried out for identi-
fication of the threshold region of the MLE. One approach is based
on the method of interval estimation (MIE) [9] in which the perfor-
mance of the MLE in the threshold region is approximated. However,
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