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Abstract—During the last decade, multiple-input multiple-ouput
(MIMO) radar has received an increasing interest. One can find several
estimation schemes in the literature related to the direction of arrivals
and/or direction of departures, but their ultimate performance in terms of
the statistical resolution limit (SRL) have not been fully investigated. In
this correspondence, we fill this lack. Particulary, we derive the SRL to
resolve two closely spaced targets in clutter interference using a MIMO
radar with widely separated antennas. Toward this end, we use a hypoth-
esis test formulation based on the generalized likelihood ratio test (GLRT).
Furthermore, we investigate the link between the SRL and the minimum
signal-to-noise ratio (SNR) required to resolve two closely spaced targets
for a given probability of false alarm and for a given probability of
detection. Finally, theoretical and numerical analysis of the SRL are given
for several scenarios (with/without clutter interference, known/unknown
parameters of interest and known/unknown noise variance).

Index Terms—Clutter interference, MIMO radar, performance analysis,
statistical resolution limit.

I. INTRODUCTION

Based on the attractive multiple-input multiple-ouput (MIMO) com-
munication theory, the MIMO radar has received an increasing interest
[1]. The advantage of the MIMO radar is to use multiple antennas to
simultaneously transmit several noncoherent known waveforms and to
exploit multiple antennas to receive the reflected signals (echoes).

One can find a plethora of algorithms for target localization using
a MIMO radar and some related lower bounds (see [1]–[4] and ref-
erences therein). However, their ultimate performance in terms of the
statistical resolution limit (SRL) has not been fully investigated. The
SRL [5]–[8], defined as the minimal separation between two signals
in terms of the parameter of interest allowing a correct source resolv-
ability, is an essential tool to quantify the estimator performance.
Among all the different approaches to characterize the SRL, one can
find three families. i) The first one is based on the null spectrum [9],
[10]. However, this criterion is only relevant to a specific high-reso-
lution algorithm. ii) The second one is based on the estimation accu-
racy [5], [11], [12]. Indeed, since the Cramér–Rao bound (CRB) ex-
presses a lower bound on the covariance matrix of any unbiased esti-
mator, then it expresses also the ultimate estimation accuracy. Conse-
quently, it could be used to describe/obtain the SRL. For example, in
this context, the Smith criterion states that two signals are resolvable
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if the separation (between the parameters of interest) is less than the
standard deviation of the separation estimation [5]. iii) The last one is
based on detection theory using a hypothesis test formulation [7], [8],
[13]. The main idea is to decide if one or two closely spaced signals
are present in the set of the observations. Consequently, in this context,
the challenge is to link the minimum separation, between two targets,
that is detectable at a given SNR (for a given probability of false alarm
and a given probability of detection).

Several works have been done on the SRL and most of them in the
context of spectral analysis and/or far field source localization ([5],
[7]–[14] and the references therein). However, in the MIMO radar con-
text, to the best of our knowledge, no results are available (except in
[3] where one can find the asymptotic SRL, using the Smith crite-
rion, for the co-located MIMO radar without clutter interference and
with a prior knowledge on the target and the radar cross-section). The
goal of this paper is to derive the SRL for two targets imbedded in
clutter interference. We consider a MIMO radar with widely separated
arrays (i.e., where the transmitter and the receiver are far enough so
that they do not share the same angle variable [2], [4]). The cases of
known/unknown parameters of interest and known/unknown nuisance
parameters with/without clutter interference are studied. The strategy
adopted in this correspondence is the use of the hypothesis test formu-
lation (more precisely, the generalized likelihood ratio test (GLRT)).
This choice is motivated by the nice property of the GLRT (i.e., it is
an asymptotically uniformly most powerful (UMP) test among all the
invariant statistical tests [15], which is the strongest statement of op-
timality that one could expect to obtain). Furthermore, in this work, it
is shown that the proposed test has the same behavior compared to the
(ideal) clairvoyant detector in the Neyman–Pearson sense.

Consequently, in this paper, we derive closed form expressions of the
SRL in known/unknown parameters of interest and known/unknown
nuisance parameters. Finally, theoretical and numerical analysis of the
SRL are given for several scenarios.

II. PROBLEM SETUP

A. Observation Model

The output of a MIMO radar with widely spaced arrays where �
targets are present is modelled for the �th pulse as follows [4]:
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where �
 �� and �� denote the number of samples per pulse period, a
complex coefficient proportional to the radar cross section (RCS) and
the normalized Doppler frequency of the th target, respectively. Let
�
 �� and �� denote the number of snapshots, the number of sen-
sors at the transmitter and the receiver, respectively.1 Then, the known
�� � � signal source matrix is defined by ��� � � ���� � � � ���� �� �
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whereas, the���� noise matrix for the �th pulse is denoted			 �. The
transmitter steering and receiver steering vectors are denoted ���� 	 � 

and ����	 � 
. The �th elements of these steering vectors are given by
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 in which �� is the

angle of the target with respect to the transmit array (i.e., direction of
departures (DOD)), where �� is the angle of the target with respect
to the reception array (i.e., direction of arrivals (DOA)), and where �

1In the following, the upper/subscript calligraphic letters � and� denote the
transmitter and the receiver part, respectively.
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is the wavelength. The distance between a reference sensors (the first
sensor herein) and the �th sensor is denoted by ��� �� and ����

� for the
transmission and the reception arrays, respectively.2

The diversity of the MIMO radar in terms of waveform coding allows
to transmit orthogonal waveforms [2], such that, ������� � �������� �
����� . After matched filtering [16], one obtains
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where �� �
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�� and where ���� � ��
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� denotes the
noise matrix after the matched filtering. It is straightforward to
rewrite the above matrix-based expression as a vectorized CanDe-
comp/Parafac [17], [18] model of dimension � � � according to
��� � ����	��� �
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vectorization operator, ��� � ������ � � � ����
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 and where� denotes the Kronecker product.

B. Statistic of the Observations

Assuming that the noise interferences (before the matched filtering)
are complex circular Gaussian independent and identically distributed
samples with zero-mean and a covariance matrix ����� [1] and, thanks to
the waveforms orthogonality, one can notice that�	�������
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 � ������ � and that
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 � � for � �� ��. Thus, �	�������
 � �����
� � . Conse-

quently, the observation follows a complex circular Gaussian distribu-
tion ��� � �� 	���� �����
� � 
.

III. DETECTION APPROACH

Without loss of generality, in the remain of the paper, we consider
that the targets of interest are the first and the second one. The� � 
remaining targets consist of the clutter interference.

A. Hypothesis Test Formulation

Resolving two closely spaced sources, with respect to their param-
eter of interest ��� �� and ����

� , can be formulated as a binary hypoth-
esis test (see [7], [8], [13], [19] and references therein). The hypoth-
esis �� represents the case where the two emitted signal sources are
combined into one signal, whereas the hypothesis�� embodies the sit-
uation where the two signals are resolvable. Since the DOAs and the
DODs are the considered parameters of interest (i.e., ��� �� and ����

�

allow us to localize the targets), thus, one obtains the following binary
hypothesis test:
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where the so-called Local SRLs (LSRL) are the local separations
given by ��
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� which resolve
the binary hypothesis test (2). Since the LSRLs are unknown, it is
impossible to design an optimal detector in the Neyman–Pearson
sense. Alternatively, the GLRT [15] is a well known approach ap-
propriate to solve such a problem. The GLRT statistic is expressed

2E.g., in the case of uniform linear transmission array (ULTA), � � ���
��� where � is the interelement space between two successive transmission
sensors
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� ��, in which �	�� �����
 and

�	�� ���� ��� � �����
 denote the probability density functions of the
observation under �� and ��, respectively. ��� ���� ��� and �� denote
the detection threshold, the maximum likelihood estimate (MLE)
of �� and �� under �� and the MLE of the parameter vector �
(containing all the unknown nuisance and/or unwanted parameters)
under ��� � � �� �� respectively.

One can easily see that the derivation of ��� and ��� is a nonlinear
optimization problem which is analytically intractable. Using the fact
that the separation is small [7], [8], [13], [19], [20] (this assumption can
be argued by the fact that the high resolution algorithms have asymp-
totically an infinite resolution power), one can approximate the model
(1) into a model which is linear w.r.t. the unknown parameters.

B. Linear Form of the MIMO Model

First, let us introduce the so-called center parameters ��� ��
�
�

� 
�

�
and ����

�
�
�

� 
�

�
. Second, as in [7], [13], and [19],

we use the first order Taylor expansion of (1) around �� � � and
�� � �, thus, one obtains 
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observation model as
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The unknown 4� 1 parameter vector is given by ���� �
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whereas �   � � ���� � � � ���� � and ���� � ��� � � � �� �� .
Rearranging (3), one obtains
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where ��� � �###� ###� ###� �� the clutter interference    �
� ###� ���� � � � ���� �� ��� � ��� � �� �� � � � �� �� and
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C. Assumptions

Throughout the rest of the paper, the following assumptions are as-
sumed to hold:
����
 The parameters ��� �� and ����

� (which represent the center pa-
rameters) are assumed to be known [8] or previously estimated [7].
����
 For sake of simplicity the Doppler frequency �� and �� are

assumed to be equal3 to � (possibly equal to zero).
����
 Finally, the clutter interference   is known or previously esti-

mated [21]. However, one should note that ��� � � � � � �� are con-
sidered as unknown unequal deterministic complex parameters.4

In the following, we use the linear form of the signal model (4). Both
cases of known and unknown noise variance will be considered.

3Nevertheless, numerical simulations will show that the derived SRL (with
equal Doppler frequency assumption) has the same behavior compared to the
clairvoyant detector.

4One should note that the case of � �� � , the case of unknown � , the
case of unknown � and the case of unknown clutter interference ��� leads to
an untractable solution of the GLRT and, consequently, is beyond the scope of
this paper.
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IV. DERIVATIONS OF THE SRL

A. Case of a Known Noise Variance

1) Case of Two Targets With Interference Clutter: We consider the
case where two closely spaced targets are imbedded into clutter inter-
ference. The noise variance is assumed to be known. Consequently,
using the linear form in (4), the binary hypothesis test in (2) can be re-
formulated as follows:

�� � ��� � ������� ��� � �� �������� �������

�� � ��� � ���			 �������� ��� � �� ����			 �������� ������

(5)

Based on (5), the unconstrained MLEs of the unknown parameters
are given by [22]
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where ������� ��� � ������ , in which ������ denotes the orthogonal projector
onto the subspace spanned by the columns of the matrix ���.

Consequently, the MLEs of the noise vector are given by (7),
shown at the bottom of the page, where the oblique projectors ���������

and ��������� are defined as ��������� � �������������������������������� and
��������� � �������������������������������� [23]. Now, we are ready to use the
statistic  ������ of the GLRT which is defined as follows:
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Let ������ ��� � ������� be any orthogonal decomposition [25] of the pro-

jector ������ ��� such that ������� � ��� and define an auxiliary random

variable 
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in which ��	 and �� denote the probability of false alarm
and the probability of detection, respectively, where the sub-
script K stands for the case of Known noise variance, ���� and
����������	� ���� denote the central and the noncentral chi-square
distribution with �� degrees of freedom, respectively, in which
� � ����������� ���� � �	�������� ���� � ����� �� � � [26]. The
noncentrality parameter is given by
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Note that �����	� ��� can be numerically computed as the solu-
tion of ���
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����, where �� � � � and
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� 	� ��� � � denote the right tails of the pdf ���� and the pdf
����������	� ����, respectively.

Result 1: The minimum SNR required to resolve two closely spaced
targets in clutter interference in the known noise variance case is given
by
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2) Case of Two Targets Without Interference: The case of two tar-

gets without interference can be deduced from the previous result. First,
note that without interference the matrix ��� becomes a column vector
equal to ����. Second, using [22, eq. (19)], one has
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and by plugging (14) into (13), one obtains the following result.
Result 2: The relationship between the SRL (�� and ��) and the

minimum SNR, required to resolve two closely spaced sources, is then
given by

���� �
�����	� ���

��			����			

 (15)

3) Case of Two Targets Without Interference and With Symmetric
Arrays: By symmetric arrays we mean �	� � ��	 � �� ��. The ex-
pression of the minimum SNR (required to resolve two closely spaced
targets) becomes more compact as follows.

Result 3: The relationship between the SRL (�� and ��)
and the minimum SNR, required to resolve two closely spaced
targets, for symmetric arrays is then given by ���� �

�� � 
� 	� �

�

� � �
� �� � � � 
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.

B. Case of Unknown Noise Variance

1) Case of Two Targets With Interference Clutter: One can extend
the latter analysis to the case of unknown noise variance ��. The obser-
vations under each hypothesis are given by (16), shown at the bottom
of the next page.
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Consequently, from (16), the GLRT is given by
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(17)

where the MLE of the noise variance under each hypothesis is given
by [27]
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After some straightforward derivations, one obtains (19), shown at
the bottom of the page, where �


� ����� , and ����� are given by (6), respec-
tively. In this case, it is more convenient to define the statistic � �������
as follows:
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the page], where �� � 
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�� � ��.

Furthermore, one can notice that the random variables ��	������ and
��������� are independent.5 Consequently, a new statistic � ����� can be in-
troduced as follows
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��� ��� ��� ��� ���� � ���� ��� � ��� ��� ���� � �. Consequently,
��������� ����� � �. Meaning that ���� and ���� are uncorrelated. Thus, they are inde-
pendent in the normal distribution case. Consequently, it is straightforward to
conclude that ������ and ������ are also independent.

where ������ and ������ �����	� ��� denote the � central and
noncentral distributions [15], respectively, with �� and ��� degrees of
freedom, in which the noncentrality parameter is given by
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Once again, note that the noncentrality parameter
����	� �� can be computed numerically as the solution of
���
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	 �	 �����, where ���
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� 
	 �	 ��� � � denote the right tails of the pdf ������ and

������ �����	� ���, respectively.
Result 4: The SNR threshold with respect to the SRL (�� and ��)

required to resolve two closely spaced targets in the presence of clutter
interference and with unknown noise variance, is given by

���� �
�� ����	� ��

���������


��
	 (24)

2) Case of Two Targets Without Interference: The case of two
targets without interference can be deduced from the previous result.
Using the same steps as in Subsection A.2, one obtains the following
result.

Result 5: The relationship between the SRL (�� and ��) and the
minimum SNR, required to resolve two closely spaced targets with un-
known noise variance, is then given by

���� �
����	� ��

��


����



	 (25)

3) Case of Two Targets Without Interference and With Symmetric
Arrays: Once again, since ���� � ���� � �� ��, for symmetric
arrays, one has the following result.

Result 6: The relationship between the SRL (�� and ��) and
the minimum SNR, required to resolve two closely spaced targets
with unknown noise variance and for symmetric arrays is given by
���� � � � 
	 �	 �

�

� �� �
� �� � �� � 
� �� � �
.

C. The Ideal (Clairvoyant) Detector

In the previous results, we have derived the SRL using the
GLRT because the Neyman–Pearson test cannot be conducted
due to the fact that ��� is an unknown parameter. Thus, it is inter-
esting to compare ��� and ���� with the SNR associated

�� � ��� � ������� ��� � 	
 �������� ������� �� � �

�� � ��� � ���


 �������� ��� � 	
 ����


 �������� ������� �� � �	
(16)

����� � ��� ��������� � ������� under ��

����� � ��� �����


� ��������� � ���� ���������� �������������� � ������������ under ��
(19)

�
������� �

���������

��	������
(21)

and
	��� � ��� �

�
��� � 	
 ��� ������ under ��

	��� � ��� �
�
��� � 	
 ��� ������ under ���

�
������ � ���� under ��

������ � ���� ��� under ��
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to the clairvoyant Neyman–Pearson test (where all the param-
eter are known, i.e., ��� � � � � � �� and even �� and ��).
Toward this aim, one can consider the new observation vector
����

�
� ��� � ��� � ��������� � 			� �


�� �
� � � 			��


���
� �. Thus, it can

be shown that ���� � ������ ���� � ���, where ��� � �� ����� leading to the
following binary hypothesis test:

�� 	 ���� � ����

�� 	 ���� � ������ �  � ����

The latter hypothesis test is a detection problem of a known determin-
istic signal imbedded in a complex white Gaussian noise with known
variance. This is the so-called mean-shifted Gauss–Gauss detection
problem such that [15]

������
�� � �� 	 �� �
� � �

�
�

�� 	 �� �� � � �

�
�

where the subscript C stands for the Clairvoyant case, and where
� � �������������� �  � �� . On the other hand, the detection
performance are given by ����	
� ��� � ������	
�� ��������

�,
in which �� denotes the so-called deflection coefficient, whereas
���� � � is the inverse of the right tail of the probability function for a
Gaussian random variable with zero mean and unit variance, whereas
����	
� ��� �

��
�

[15, p. 103]. Consequently, denoting ��� � � �
�
�,

one has the following result.
Result 7: The relationship between  and the minimum SNR,

required to resolve two closely spaced sources in the optimal (clair-
voyant) case, is then given by

��� �
�� ��	
� ���

������ �
� (26)

The next section is devoted to the theoretical and numerical analysis
of the SRL (or equivalently their corresponding minimal SNRs, i.e.,
���� ���, and ���).

V. ANALYSIS OF THE SRL AND SIMULATIONS RESULTS

A. Effect of the Noise Variance’s Prior on the Minimum SNR
Required to Resolve Two Sources

Let us compare the derived SNR i) in the clairvoyant case, ii) in the
unknown parameters with known noise variance case, and iii) and in
the unknown parameters with unknown noise variance case. On one
hand, from (15), (25), and (26), one obtains

���

���
� �

����	
� ���

����	
� ���
where � �

����

���� �
(27)

and
���

���
�
����	
� ���

����	
� ���
� (28)

On the other hand, note the following: 			�� for any �� � �	
, one
has ����	
� ��� � ����	
� ��� � ����	
� ��� [7]; 			�� let us set
���� � ��������



����, in which ��� � ����� �

�
��� � ����

�

�
��� �

����
�

��� � ����. Then, the Hermitian matrix � � ��� � � ��� �

�������
�
� is a positive semi-definite matrix. Thus, �  �. Consequently,

from (27) and (28), 			�, and 			�, one deduces, as expected, that for
fixed �	
 and �� (such that �� � �	
) one has ��� � ��� �
���. In Fig. 1, we have reported the LSRL �� in the clairvoyant,
the known noise variance and the unknown noise variance cases versus
the SNR (the same conclusion are done also for the LSRL �� ). One
can notice that the LSRLs derived in the cases of known and unknown
noise variance have the same behavior as the one in the clairvoyant
case. For the same SRL (i.e., for a fixed �� and ��), the gap between

Fig. 1. The LSRL versus the required SNR to resolve two closely spaced targets
for � � � samples per pulse period, ULA at the transmitter and at the receiver
with � � � � � and � � ��� snapshots.

��� and ��� is exclusively due to the noncentrality parameters
����	
� ��� and����	
� ���. This gap is approximately equal to 1 dB.
Whereas, the gap between ��� and ��� is due to both: i) the ratio
of the deflection coefficient ����	
� ��� over the noncentrality param-
eter ����	
� ���, and, ii) the norm of�, which reflects the value of �.
This latter gap, is evaluated to 9 dB.

B. Effect of the Clutter Interference

In the following, we consider that the targets of interest (i.e., the first
one and the second one) are spaced by �� and ��, whereas the � � �
remain targets are equally spaced by �� and ��.

In Fig. 2, we have reported the effect of additional sources (consid-
ered as a clutter interference) on the SNR threshold (i.e., the required
SNR to resolve two closely spaced targets) w.r.t. �� (the same conclu-
sion are done also for �� ). One can distinguish two cases.

1) The first one represents the scenario where�� � �� and�� �
��. In this case, one can notice that the additional sources do not
affect the minimal SNR [Fig. 2 (top)]. This can be explained by
the fact that the high resolution algorithms have asymptotically an
infinite resolving power [1], [20].

2) The second scenario is for �� � �� and �� � ��. In this
case, one can notice the drastic effect of the interfering sources
[Fig. 2 (bottom)]. For example, the SNR gap between � � �
targets and � � � targets is evaluated around 6 dB.

Finally, in Fig. 3, we investigated the relative distance ��
	

� from
which the interfering targets start to affect the targets of interest in the
case of �� � �� � �
� � � �, and � � �

. One can note that,
in these conditions, the interference targets will have an insignificant
effect on the minimum SNR required to resolve the targets of interest
if the relative distance between the interfering targets and the targets of
interest is greater than ten (i.e., if �� � �
 ��). The same conclusion
is done for �� .

VI. CONCLUSION

In this paper, we have derived the statistical resolution limit (SRL)
for two closely spaced targets using a MIMO radar with widely sepa-
rated arrays (made from possibly nonuniform transmitter and receiver
arrays) in the presence of clutter interference. Toward this goal, we
have conducted a hypothesis test approach based on the generalized
likelihood ratio test (GLRT). This analysis provides useful information
concerning the behavior of the SRL and the minimum SNR required
to resolve two closely spaced targets for a given probability of false
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Fig. 2. Top: The minimum SNR to resolve two closely spaced targets with
known noise variance for different values of � in which � � � � ����

� � � � �, and � � ��� snapshots. Bottom: The minimum SNR to
resolve two closely targets with known noise variance for different values of �
in which � � � � ���� � � � � �, and � � ��� snapshots.

Fig. 3. The effect of the interference targets on the minimum SNR required to
resolve two closely spaced targets with known noise variance versus the relative
distance in which � � � � �� and � � ��� snapshots.

alarm and a given probability of detection. Finally, numerical simula-
tions shows that the derived SRL has the same behavior compared to
the clairvoyant (ideal) detector.
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