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a b s t r a c t

In this fast communication, we derive the statistical resolution limit (SRL), characteriz-

ing the minimal parameter separation, to resolve two closely spaced known near-field

sources impinging on a linear array. Toward this goal, we conduct on the first-order

Taylor expansion of the observation model a Generalized Likelihood Ratio Test (GLRT)

based on a Constrained Maximum Likelihood Estimator (CMLE) of the SRL. More

precisely, the minimum separation between two near-field sources, that is detectable

for a given probability of false alarm and a given probability of detection, is derived

herein. Finally, numerical simulations are done to quantify the impact of the array

geometry of the signal sources power distribution and of the array aperture on the

statistical resolution limit.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Passive sources localization by an array of sensors is an
important topic with a large number of applications,
such as sonar, seismology, digital communications, etc.
One can find many estimation schemes adapted to the so-
called near-field source localization (e.g., [1–5]). However,
to the best of our knowledge, no work has been done on
the resolvability of closely spaced near-field sources.

A common tool to characterize the resolvability
between two closely spaced signals is the so-called
Statistical Resolution Limit (SRL). The SRL [6–12], defined
as the minimal separation between two signals in terms
of parameters of interest which allows a correct resolva-
bility, is a challenging problem and an essential tool to
quantify estimators performance.

The idea herein is to use the detection theory in order
to derive/link the SRL to the probability of false alarm, Pfa
ll rights reserved.

: þ331 6985 1765.

Korso),
and to the probability of detection Pd. In this spirit
Sharman and Milanfar [9] have studied the problem of
distinguishing whether the observed signal contains one or
two frequencies at a given SNR using the Generalized
Likelihood Ratio Test (GLRT). In Liu and Nehorai [11],
defined a statistical angular resolution limit using the
asymptotic equivalence of the GLRT (in terms of snapshots).
Recently, Amar and Weiss [12] proposed to determine the
SRL of complex sinusoids with nearby frequencies using the
Bayesian approach for a given correct decision probability.

It is important to note that all the references listed
before have been conducted in the spectral analysis
context or for the far-field source localization problem.
To the best of our knowledge, no study/result is available
concerning the near-field source localization problem.
The goal of this paper is to fill this lack. More precisely,
we consider the context of deriving the SRL for two
complex narrow-band closely spaced near-field sources
using a binary hypothesis test approach. Since the separa-
tion term is an unknown parameter, it is impossible to
design an optimal detector in the Neyman–Pearson sense
[13,14]. Consequently, the GLRT is applied herein. The
choice of the hypothesis test strategy is motivated by the
following arguments: (1) the SRL based on detection
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theory takes into account the statistical coupling between
parameters (unlike the Lee criterion [6]), (2) there exists a
relationship between the SRL based on the Smith criterion
[7] and the SRL based on detection theory in the asymp-
totic case [11] (in terms of snapshots). Taking advantage
of this relationship, one could deduce the SRL in the Smith
sense, and finally, (3) unlike the Bayesian approach [12],
the use of the GLRT does not require any prior knowledge
on the unknown parameter of interest [13]. Consequently,
in this paper we derive the SRL for two closely spaced
near-field sources that allows a correct sources resolva-
bility for an arbitrary linear array following the GLRT
strategy.

2. Problem setup and assumptions

Let us consider a received signal composed of two
emitted near-field and narrow-band sources impinging on
a linear array (possibly nonuniform) of N sensors. The
observation model is given by [3,4,15]

ynðtÞ ¼
X2

m ¼ 1

smðtÞe
jtnmþvnðtÞ, ð1Þ

t¼ 1, . . . ,L,n¼ 0, . . . ,N�1 where yn(t) and vn(t) denote the
noisy observed signal and the additive noise at the output
of the nth sensor, respectively, whereas, sm(t) denoted the
mth deterministic source signal. The number of snapshots
is denoted by L and tnm is the delay associated with the
signal propagation time from the first sensor to the nth
sensor w.r.t. the mth source which is given by [4]

tnm ¼
2prm

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

d2
n

r2
m

�
2dn sin ym

rm

s
�1

 !
ð2Þ

where n, rm and ym 2 ½0,p=2� denote the signal wave-
length, the range and the bearing of the mth source,
respectively. The distance between a reference sensor
(the first sensor herein) and the nth sensor is denoted
by dn (e.g., in the case of Uniform Linear Array (ULA),
dn ¼ nd where d is the inter-element space between two
successive sensors). It is well known that, if the source
range is inside of the so-called Fresnel region [4,16], i.e.

0:62ðD3nÞ1=2ormo2D2 ðN�1Þ2

n
, ð3Þ

where D is the array aperture, then the delay tnm can be
approximated by

tnm ¼ rmdnþkmd2
nþo

d2
n

r2
m

� �
, ð4Þ

in which rm ¼ ð�2p=nÞ sinðymÞ and km ¼ ðp=nrmÞ cos2ðymÞ

denote the parameters of interest. Neglecting the term
oðd2

n=r2
mÞ, the observation model becomes

ynðtÞ ¼
X2

m ¼ 1

smðtÞe
jðrmdnþkmd2

nÞ þvnðtÞ: ð5Þ

Consequently, the observation vector can be expressed as

yðtÞ ¼ ½y0ðtÞ . . . yN�1ðtÞ�
T ð6Þ

¼ ½aðr1,k1Þaðr2,k2Þ�sðtÞþvðtÞ, ð7Þ
in which vðtÞ ¼ ½v0ðtÞ . . .vN�1ðtÞ�
T , sðtÞ ¼ ½s1ðtÞs2ðtÞ�

T and
where

½aðrm,kmÞ�nþ1 ¼ ejðrmdnþkmd2
nÞ: ð8Þ

Finally, the full observation vector can be written as

y¼
D
½yT ð1ÞyT ð2Þ . . . yT ðLÞ�T : ð9Þ

Throughout the rest of the paper, the following
assumptions are assumed to hold:
�
 A1. The additive noise is assumed to be a complex
circular white Gaussian random process (uncorrelated
both temporally and spatially) with zero-mean and
known [9] or previously estimated [17] variance s2.

�
 A2. The parameters rc ¼ ððr1þr2Þ=2Þ and kc ¼ ððk1þ

k2Þ=2Þ (which represent the center parameters) are
assumed to be known [11] or previously estimated [9].
However, in the following we prove that this assump-
tion does not affect the SRL (since the SRL is indepen-
dent of rc and kcÞ.

�
 A3. The sources and the array geometry are known

[18–21] (the case of unknown signal sources leads to
an intractable solution of the SRL and is beyond the
scope of this paper).

3. Near-field statistical resolution limit

3.1. Hypothesis test formulation

In the following, we conduct a binary hypothesis test
formulation to derive the SRL. Let the hypothesis H0

represents the case where the two signal sources combine
into one single signal (i.e., it represents the case of two
unresolvable targets), whereas the hypothesis H1 embo-
dies the situation where the two signals are resolvable
[9,11,12]. Then, the hypothesis test is given by

H0 : d90,

H1 : da0,

(
ð10Þ

where d¼
D
½drdk�T denotes the vector separation in which

dr ¼ r2�r1 and dk ¼ k2�k1. The SRL d ¼
D
½drdk�T repre-

sents the vector separation which resolves (10) for a given
Pfa and a given Pd. The Generalized Likelihood Ratio Test
(GLRT) is a well known approach to solve a composite
binary hypothesis test [14]. It is expressed as follows

GðyÞ ¼maxdr ,dk
pðy; dr,dk,H1Þ

pðy;H0Þ
¼

pðy; d̂r,d̂k,H1Þ

pðy;H0Þ
_

H1

H0

g, ð11Þ

in which pðy; :Þ denotes the pdf of y� CN ðEfyg,s2IÞ,
si ¼ ½sið1Þ . . . siðLÞ�

T for i¼ 1;2, and where g, d̂r and d̂k
denote the detection threshold, the Maximum Likelihood
Estimate (MLE) under H1 of dr and dk, respectively. One
can note that the difficult task to derive the GLRT is to
obtain an analytical expressions of d̂r and d̂k since the
near-field model is highly nonlinear. The key idea to
overcome this problem is to consider a small separation
[9]. This assumption can be argued by the fact the high
resolution algorithms have, asymptotically, an infinite
resolving power [22]. Consequently, in the following, we



M.N. El Korso et al. / Signal Processing 92 (2012) 547–552 549
show that the near-field model can be linearized by
considering small separation on r and k.

3.2. Linearized near-field model

Using parameters rc and kc , a first-order Taylor
expansion of the observation model around ðdr,dkÞ ¼
ð0;0Þ leads to

y¼ Asþ þDdþv, ð12Þ

where sþ ¼ s1þs2 and D¼ ½Bs�Cs�� in which s� ¼ s2�s1

ðs1as2Þ and si ¼ ½sið1Þ . . . siðLÞ�
T for i¼1,2. Denoting,

d¼ ½d0 d1 . . . dN�1�
T , � the Kronecker product, � the

Hadamard product and IL the identity matrix of dimen-
sion L� L, we have

A¼ IL � aðrc ,kcÞ, ð13Þ

B¼
j

2
IL � ðaðrc ,kcÞ � dÞ ð14Þ

and

C¼
j

2
IL � ðaðrc ,kcÞ � d� dÞ: ð15Þ

3.3. Constrained MLE (CMLE) of the SRL

Since, rc , kc , s1 and s2 are known, observation model
(12) can be simplified according to

z¼
D

y�Asþ ¼Ddþv: ð16Þ

As d 2 R2, one has to find the Constrained MLE (CMLE)
of d in order to use correctly the GLRT. More precisely,
the constrained optimization problem can be written
according to

arg max
d

Lðz,dÞ subject to Ifdg ¼ 0, ð17Þ

where Lðz,dÞ ¼ ln pðz;d,H1Þ is the log-likelihood function,
If:g denotes the imaginary part. The Lagrange function
adapted to this problem can be defined as

Lðd,!Þ ¼ Lðz,dÞ�
j!T

2
ðd�dn

Þ ð18Þ

Lðd,!Þ )

@L
@d
¼
�1

s2
DT
ðz�DdÞn�j

!

2
@L
@!
¼ Ifdg,

8>><
>>: ð19Þ

where ! is the Lagrange multiplier. Setting ð@L=@dÞ9
d̂0
¼ 0

one has

d̂0 ¼ ðD
HDÞ�1 DHz�

j

2
s2!

� �
, ð20Þ

where

DHD¼
Js�J

2

4
F, ð21Þ

in which

F¼
f2 f3

f3 f4

" #
ð22Þ
and

fi ¼
XN�1

n ¼ 0

ðdnÞ
i: ð23Þ

Thus, note that DHD is a real matrix. Consequently, using
ð@L=@!Þ9!0

¼ 0 and (20), one obtains

!0 ¼
2

s2
IfDHzg: ð24Þ

Plugging (24) into (20) one obtains

d̂ ¼ ðDHDÞ�1RfDHzg: ð25Þ

3.4. Near-field SRL derivation

In the light of the above framework, the new binary
hypothesis test is given by

H0 : z¼ v,

H1 : z¼Ddþv:

(
ð26Þ

The GLRT is then expressed as

GðzÞ ¼
pðz; d̂,H1Þ

pðz;H0Þ
¼ eððJzJ2=s2Þ�ðJz�Dd̂J2

Þ=s2Þ
_

H1

H0

Z0: ð27Þ

Thus,

ln GðzÞ ¼
1

s2
ðzHDd̂þ d̂

T
DHz�d̂

T
DHDd̂Þ: ð28Þ

Plugging (25) into (28), one obtains

ln GðzÞ ¼
1

s2
RfzHDgðDHDÞ�1RfDHzg: ð29Þ

Let us define the new statistic

TðzÞ ¼
D

2 ln GðzÞ_
H1

H0

Z¼ 2 ln Z0: ð30Þ

According to the Appendix, one obtains

TðzÞ �
w2

2ð0Þ ¼ w2
2 under H0,

w2
2ðlðPfa,PdÞÞ under H1,

(
ð31Þ

where w2
2 and w2

2ðlðPfa,PdÞÞ denote the central and the non-
central chi-square distribution of two degrees of freedom,
respectively, in which

lðPfa,PdÞ ¼
2Js�J

2

s2
d

T
Fd: ð32Þ

Moreover, the probability of false alarm and the prob-
ability of detection are given by

Pfa ¼ Qw2
2
ðZÞ ð33Þ

and

Pd ¼Qw2
2
ðlðPfa ,PdÞÞ

ðZÞ, ð34Þ

where Qw2
2
ðZÞ and Qw2

2
ðlðPfa ,PdÞÞ

ðZÞ denote the right tail of the

w2
2 and w2

2ðlðPfa,PdÞÞ pdf starting from Z. Thus, the non-

centrality parameter lðPfa,PdÞ can also be expressed as the

solution of

Q�1
w2

2
ðPfaÞ ¼Q�1

w2
2
ðlðPfa ,PdÞÞ

ðPdÞ, ð35Þ
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where Q�1
w2

2

and Q�1
w2

2
ðlðPfa ,PdÞÞ

are the inverse of the right tail

of the w2
2 and w2

2ðlðPfa,PdÞÞ pdf. Consequently, one can state

the following results:

Result 1. The relationship between the SRL d and the
minimum SNR required to resolve two closely spaced
known near-field sources, is given by

SNR¼
D Js1J

2
þJs2J

2

s2
¼ lðPfa,PdÞ

Js1J
2
þJs2J

2

2Js�J
2d

T
Fd

& ð36Þ

Result 2. The relationship between the SRL d and the
minimum SNR required to resolve two orthogonal
(i.e., sH

1 s2 ¼ 0Þ closely spaced known near-field sources,
is given by

SNRo ¼
lðPfa,PdÞ

2d
T
Fd

, ð37Þ

since Js�J
2
¼ Js1J

2
þJs2J

2. &

Note that SNRo is invariant in comparison with the
source powers.

4. Simulation results

Two complex near-field narrow-band sources belonging
to the so-called Fresnel region are impinging on a linear
Fig. 1. The required SNR to resolve two known closely spaced near-field

sources using the exact and the estimated (using the 2D-MUSIC algo-

rithm [5]) parameters rc and kc , for an ULA of N¼15 sensors with L¼25

snapshots and dr ¼ 0:02. The same behavior is noticed w.r.t. dr .

Fig. 2. The required SNR to resolve two closely spaced BPSK near-field sources

sources, for an ULA of N¼7 sensors with L¼25 snapshots and dk ¼ 0:02. The s
array (the geometry is detailed of each scenarios). The
probability of false alarm and the probability of detection
are, for example, fixed for Pfa ¼ 0:01 and Pd¼0.99.
�

in

ame
From Result 1, one can notice that the SRL does not
depend on the parameters rc and kc . Furthermore,
from the Cramér–Rao bound point of view, one can
easily prove that the CRB w.r.t. r1 and r2 (or, k1 and
k2Þ, for two known signal sources, depends only on dr
and dk and does not depend directly on r1 and r2 (or,
k1 and k2Þ themselves (i.e., CRBðriÞ ¼ f ðdr,dkÞ and
CRBðkiÞ ¼ f 0ðdr,dkÞÞ. Consequently, since the estimation
accuracy depends only on the parameter separation, it
is natural to expect that the SRL does not depend on rc

or kc . Indeed, and as expected, from Fig. 1 one notices
that the SRLs using the exact values rc and kc and the
estimated values r̂c and k̂c are the same. One con-
cludes that the assumption A2 is not restrictive at all.

�
 On the other hand we consider now the ratio of SNRo,

given in (37), over the SNR, given in (36). Assuming the
same signal sources power in the orthogonal and non-
orthogonal cases, one obtains

SNRo

SNR
¼

Js1J
2
þJs2J

2
�2RfsH

2 s1g

Js1J
2
þJs2J

2
:

Consequently, in the context of orthogonal signal
vectors, it should be noted that the minimum SNR in
(36) may be either greater than or less than SNR0 in
(37). For example, in the case of Binary Phase-Shift
Keying (BPSK) SNRo4SNR as shown in Fig. 2. The gain
is around 3 dB. The necessary and sufficient condition
to have SNRooSNR is RfsH

2 s1g40.

�
 Finally, we study the impact of nonuniform array

geometries on the SRL. Different configurations are
considered herein as shown in Table 1; type 1 config-
uration where the three missing sensors cause a
diminution of the array aperture; type 2 and type 3
two any configurations where the three missing sen-
sors do not affect the array aperture; and the filled ULA
configuration. From Fig. 3, one can deduce that a loss
of sensors has an important impact on the SRL if the
sensors are located in the extremity of the array (this
loss is around 2.5 dB). However, this problem is largely
mitigated if the missing sensors do not modify the
the case of real orthogonal signal sources and non orthogonal signal

behavior is noticed w.r.t. dk .



Table 1
Different array geometries where � and J denote the position of sensors

and missing sensors, respectively. The inter-element distance is d¼ n=4.

Array type Array configuration

Type 1 J � � J � � � � J

Type 2 � J � J � J � � �

Type 3 � J J J � � � � �

ULA � � � � � � � � �

Fig. 3. The required SNR to resolve two known closely spaced near-field

sources for different array geometries (see Table 1) with L¼100 snap-

shots, (top) for a fixed dk ¼ 0:001, (bottom) for a fixed dr ¼ 0:001.
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array aperture. Nevertheless, note that removal of
sensors which are closer to the reference sensor (first
sensor) causes a smaller reduction in fi, (for i¼2, 3, 4)
in (36), and hence a smaller increase in the required
SNR.

5. Conclusion

In this paper, we have derived the Statistical Resolution
Limit (SRL) for two closely spaced near-field time-varying
narrowband known sources observed by a linear array
(possibly nonuniform). Toward this goal, we have conducted
a first-order Taylor expansion of the observation model and
a Generalized Likelihood Ratio Test (GLRT) based on a
Constrained Maximum Likelihood Estimator (CMLE) of the
SRL. This analysis provides useful information concerning
the behavior of the SRL and the minimum SNR required to
resolve two closely spaced near-field sources for a
given probability of false alarm and a given probability of
detection. In this way, the SRL has been analyzed with
respect to the power signal sources distribution and the
array aperture.

Appendix

The aim of this appendix is to find the distribution of
TðzÞ under H0 and H1. Toward this end, we first begin by
deriving the covariance matrix of RfDHzg denoted by
C

RfDHzg. Since

RfDHzg �N ðEfRfDHzgg,C
RfDHzgÞ,

one has

C
RfDHzg ¼ EfRfDHvgRfDHvgTg ¼ EfabT

g, ð38Þ

where

a¼RfDH
gRfvg�IfDH

gIfvg ð39Þ

and

bT
¼RfvT gRfDn

g�IfvTgIfDn
g: ð40Þ

Since v is a complex white Gaussian circular noise,
thus

EfRfvgRfvgT g ¼ EfIfvgIfvgTg ¼
s2

2
I ð41Þ

and

EfRfvgIfvgTg ¼ EfIfvgRfvgTg ¼ 0: ð42Þ

Thus, (38) becomes

C
RfDHzg ¼

s2

2
ðRfDH

gRfDn
gþIfDH

gIfDn
gÞ ¼

s2

2
RfDHDg:

ð43Þ

Consequently, since RfDHDg ¼DHD (see (21)), thus, TðzÞ
can be written as

TðzÞ ¼ �zT C�1
�z
�z: ð44Þ

where the Gaussian random variable �z is given by
�z ¼RfDHzg and C �z denotes the covariance matrix of the
random variable �z. Thus, from (44), one can notice that

TðzÞ � w2
2ðlðPfa,PdÞÞ, ð45Þ

where w2
2ðlðPfa,PdÞÞ denotes the non-central distribution of

two degrees of freedom in which the non-centrality
parameter is given by

lðPfa,PdÞ ¼ Ef �zgT C�1
�z Ef �zg ¼

2Js�J
2

s2
d

T
Fd: ð46Þ

Finally, one obtains

TðzÞ �
w2

2ð0Þ ¼ w2
2 under H0,

w2
2ðlðPfa,PdÞÞ under H1,

(
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