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a b s t r a c t

The asymptotic statistical resolution limit (SRL), denoted by d, characterizing the

minimal separation to resolve two closely spaced far-field narrowband sources for a

large number of observations, among a total number of MZ2, impinging on a linear

array is derived. The two sources of interest (SOI) are corrupted by (1) the interference

resulting from the M�2 remaining sources and by (2) a broadband noise. Toward this

end, a hypothesis test formulation is conducted. Depending on the a priori knowledge

on the SOI, on the interfering sources and on the noise variance, the (constrained)

maximum likelihood estimators (MLEs) of the SRL subject to d 2 R and/or in the context

of the matched subspace detector theory are derived. Finally, we show that the SRL

which is the minimum separation that allows a correct resolvability for given

probabilities of false alarm and of detection can always be linked to a particular form

of the Cramér–Rao bound (CRB), called the interference CRB (I-CRB), which takes into

account the M�2 interfering sources. As a by product, we give the theoretical

expression of the minimum signal-to-interference-plus-noise ratio (SINR) required to

resolve two closely spaced sources for several typical scenarios.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The context of narrowband far-field source localization
has been widely investigated in the literature [1]. How-
ever, the ultimate performance in terms of resolution
limit have not been fully investigated. The statistical
resolution limit (SRL) [2–12], defined as the minimal
separation between two signals in terms of parameter of
interest, is a challenging problem [13] and an essential
tool to quantify estimator performance. A closely related
ll rights reserved.

.N. El Korso),
problem is to derive the minimum signal-to-noise ratio
(SNR) required to resolve two closely spaced sources.

Among all the different approaches to characterize the
SRL, one can find three families. The first and oldest one is
based on the null spectrum [2,3]. A second one is based on
the estimation accuracy [5–8] and the last one and maybe
the most promising one is based on detection theory in
the context of the hypothesis test formulation. One can
find in the literature several works related to the SRL or to
the minimum SNR required to resolve two closely spaced
sources using a hypothesis test formulation [9–12,14].
Specifically, in [11], Liu and Nehorai have derived the so-
called statistical angular resolution limit (i.e., the SRL)
w.r.t. direction-of-arrival (DOA) using the asymptotic
equivalence expression (in terms of number snapshots) of
the Generalized Likelihood Ratio Test (GLRT). More recently,
Amar and Weiss [12] have proposed to determine the SRL of
two complex sinusoids with nearby frequencies using the
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Fig. 1. Two closely spaced SOI imbedded in three interfering sources

observed by a linear array with N¼7 sensors.

M.N. El Korso et al. / Signal Processing 92 (2012) 2471–24832472
Bayesian approach for a given correct decision probability.
Finally, Shahram and Milanfar [10] have considered the
resolvability of sinusoids with nearby frequencies by deriving
the theoretical expressions of the minimum SNR required to
resolve two closely spaced sources based on the GLRT.

In this paper, we focus our analysis on a GLR based
hypothesis test formulation. This choice is motivated by
the following arguments: (1) unlike the SRL based on the
mean null spectrum [2,3], the SRL based on detection
theory is claimed to be appropriate for all high-resolution
algorithms since it is not related to a specific algorithm,
(2) there exists a relationship between the SRL based on
the estimation accuracy [7] (i.e., the Cramér–Rao bound
(CRB)) and the SRL based on detection theory [11] (see
Sections 3.4, 4.4, 5.4 and 6.4), (3) unlike the Bayesian
approach, the use of the GLRT does not require any prior

knowledge on the parameter of interest, (4) since the
separation term is unknown to the user, it is impossible to
design an optimal detector in the Neyman–Pearson sense
[15] but the GLRT applied to our model is Uniformly Most
Powerful invariant (UMP-invariant) test among all the
invariant statistical tests [16], which is considered as the
strongest statement of optimality that one could expect to
obtain [17].

Note that all existing work in the field has been derived
for the case of only two sources of interest (SOI) neglecting
the effect of the other (interfering) sources. Another impor-
tant point is that most of the contributions have been made
in the case of spectral analysis and thus the impact of the
array geometry on the resolution has not been studied in the
context of statistical array processing with complex sources.

In this work, the considered model can be described by
two narrowband far-field closely spaced SOI, among a total
number of MZ2 sources, embedded in a competitive
environment constituted by (1) the interference resulting
from the M�2 remaining sources (called here sources of
interference (SI)) and by (2) a broadband noise. For this
general model, we derive the asymptotic (in term of the
number of observations) theoretical expressions of the mini-
mum signal-to-interference-plus-noise ratio (SINR) required
to resolve two closely spaced sources for linear arrays.

The paper is organized as follows. We first begin by
introducing the observation model and the problem setup in
Section 2. Sections 3–6 are devoted to the derivation of the
minimum SNR/SINR required to resolve two closely spaced
sources and SRL derivations depending on the assumptions
on the SOI, on the SI and on the noise variance. Section 7
gives a summary of the main results and compares the
minimum SINRs required to resolve two closely spaced
sources. Furthermore, in Section 8, numerical simulations
are given to assess the effect of the array geometry, of the
aperture, of the prior sources knowledge and the effect of
the SI. Finally, Section 9 concludes this work.
1 For instance, in the case of the uniform LA (ULA), dn ¼ nd where d

denotes the inter-element space between two successive sensors.
2. Problem setup and assumptions

Let us consider a linear array (LA) with N sensors that
receives at the tth snapshot, a signal emitted by M

deterministic far-field and narrow-band sources, denoted
by fs1ðtÞ, . . . ,sMðtÞg. For the nth sensor and for the tth
snapshot, the observation model is given by [1]

ynðtÞ ¼
XM

m ¼ 1

smðtÞ expðjomdnÞþvnðtÞ,

t¼ 1, . . . ,L, n¼ 0, . . . ,N�1, ð1Þ

where L stands for the number of snapshots, om ¼

�2p sinðymÞ=n is the parameter of interest of the mth
source which is a function of the bearing ym and of the
signal wavelength n. dn stands for the (known) distance
between a reference sensor (the first sensor herein) and
the nth sensor.1 The additive noise vn(t) is assumed to be a
complex random process. Consequently, the observation
vector at the tth snapshot, can be expressed as

yðtÞ ¼ ½y0ðtÞ . . . yN�1ðtÞ�
T ¼ ½a1 . . . aM ��sðtÞþvðtÞ,

where vðtÞ ¼ ½v0ðtÞ . . . vN�1ðtÞ�
T and �sðtÞ ¼ ½s1ðtÞ . . . sMðtÞ�

T ,
in which the ðnþ1Þth entry of the steering vector am is
given by ½am�nþ1 ¼ expðjomdnÞ, m¼ 1;2, . . . ,M. Finally, the
full observation vector is as follows:

y9½yT ð1Þ yT ð2Þ � � � yT ðLÞ�T :

2.1. Hypothesis test formulation of the SRL in subspace

interference

2.1.1. SRL in subspace interference

The aim of this work is to derive the theoretical SINR
required to resolve two SOI and the SRL, denoted by d, in the
context of the scenario depicted in Fig. 1. More precisely,
1.
 Two closely spaced sources are of interest (SOI). With-
out loss of generality, we consider that these two
sources are s1 and s2 (such that s1as2). Consequently,
the SRL (i.e., the separation) is defined as d9o2�o1.
2.
 The M�2 remaining sources, denoted by fs3, . . . ,sMg,
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are viewed as an interference (called here sources of
interference (SI)). The subspace interference of the SI is
assumed known (i.e., the DOAs of the SI are assumed
known). However, we will consider the case of known
and unknown signal SI fs3, . . . ,sMg.
3.
 The background broadband noise is assumed to be a
complex circular white Gaussian random process with
zero-mean and variance s2.

Consequently, the problem setup can be viewed as
deriving the theoretical SINR required to resolve two SOI
and the SRL for two closely spaced SOI imbedded in a
structured interference (the M�2 remaining sources) and
an unstructured interference (i.e., the broadband noise).

2.1.2. Hypothesis test formulation

The problem of resolving only two closely spaced SOI
in the context of a binary hypothesis test has been already
(partially) tackled2 in [9–12]. But in these references, the
model is restricted to only two closely spaced SOI. In this
work, we consider a more general model described in the
previous section. This model has a rich structure since the
impact of M�2 interfering sources is taken into account.
Consequently, the theoretical SINR required to resolve
two SOI and the SRL derived in this paper are appropriate
to the realistic situation where MZ2 sources belong to
the field of view of a LA (see Fig. 1).

In the following we assume that two sources are in the
vicinity of each other. Let the hypothesis H0 represents the
case where the two SOI exist but are combined into a single
signal, whereas the hypothesis H1 embodies the situation
where the two SOI are resolvable. Consequently, a conve-
nient binary hypothesis test (see [9–12]) is given by

H0 : d¼ 0,

H1 : da0:

(
ð2Þ

Since the separation term d is unknown, it is impos-
sible to design an optimal detector in the Neyman–
Pearson sense. In this case, the Generalized Likelihood
Ratio Test (GLRT) [15] is a well-known statistic test to
solve such a problem and is given by

GðyÞ ¼
maxd,q1

pðy;d,q1,H1Þ

maxq0
pðy;q0,H0Þ

¼
pðy; d̂,q̂1,H1Þ

pðy; q̂0,H0Þ
_

H1

H0

Z0, ð3Þ

in which pðy;q0,H0Þ and pðy; d,q1,H1Þ denote the probabil-
ity density functions (pdf) under H0 and H1, respectively,
and where Z0, d̂ and q̂ i denote the detection threshold, the
maximum likelihood estimate (MLE) of d under H1 and the
MLE of the parameter vector qi (containing all the unknown
nuisance and/or unwanted parameters) under Hi,i¼ 0;1. If
the statistic GðyÞ is greater than a given threshold Z0, then
the signals are said to be resolvable.

Unfortunately, closed-form expressions of d̂, q̂1 and q̂0

are not available (this is mainly due to the derivation of d̂
which is, in this case, a highly nonlinear and intractable
optimization problem [18]). However, since the two SOI
2 More precisely, in this paper we consider the effect of the

rference on the SRL and we derive analytical expressions of the

imum required SNR/SINR to resolve two closely spaced sources.
are closely spaced (this assumption can be argued by the
fact that the high resolution algorithms have asymptoti-
cally an infinite resolving power [19,9,7,10–12]), one can
approximate model (1) into a new model which is linear
w.r.t. the parameter d.

2.2. Linear form of the model with subspace interference

First, let us introduce the center parameter oc ¼

ðo1þo2Þ=2. As in [9–12], using the assumption of a small
angular separation of the two SOI, a first-order Taylor
expansion around d¼ 0 leads to

y¼
1

Asþ þdBs�þeþv, ð4Þ

where e¼ Cs, C ¼ ½A3 . . . AM�, s¼ ½sT
3 . . . sT

M �
T and

sþ ¼ s1þs2, ð5Þ

s� ¼ s2�s1, ð6Þ

in which si ¼ ½sið1Þ . . . siðLÞ�
T . Furthermore, the signal e

encompasses the interference of all the sources apart
from the two closest ones (i.e., the first and the second
one). In addition, denoting IL the L� L identity matrix,
d¼ ½d0 d1 . . . dN�1�

T and a the steering vector considered
for the center parameter oc (i.e., ½a�nþ19expðjocdnÞ,
n¼ 0, . . . ,N�1), we define

A9

a 0

&

0 a

2
64

3
75
ðNLÞ�L

¼ IL � a, ð7Þ

B9
j

2
IL � _a where _a9a� d, ð8Þ

Am9IL � am for m¼ 3, . . . ,M, ð9Þ

where � and � stand for the Kronecker and the Hada-
mard products, respectively.

In the rest of the paper, and as in [10,11], the parameter
oc is assumed to be known or previously estimated.
Furthermore, we consider that the matrix C is known or
previously estimated [20] (i.e., the DOAs of the SI are
known). Note that the case of unknown oc and/or unknown
C leads to an untractable solution of the GLRT and, conse-
quently, is beyond the scope of this paper.

2.3. Definition of the SNR and the SINR

A standard measure for the point source without inter-
ference is the signal-to-noise ratio defined as

SNR9
P2

m ¼ 1 JsmJ2

s2
: ð10Þ

But a more convenient measure in case of interference
is the signal to interference plus noise ratio defined accord-
ing to

SINR9
P2

m ¼ 1 JsmJ
2

JsJ2
þs2

: ð11Þ

Obviously, we have SINRrSNR. Let INR 9JsJ2=s2 be
the interference to noise ratio. Straightforward relations
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between the SNR and the SINR are

SINR¼
1

1þa SNR if INR¼ a, ð12Þ

SINR¼ SNR if INR¼ 0, ð13Þ

SINR� SNR if INR51: ð14Þ

In this work, the theoretical SINR and SNR are derived for
a given SRL in the scenarios listed above. More precisely,
relation (12) means that if the INR is fixed to the constant a
then the SINR is proportional to the SNR. Relation (13) is a
particular case of relation (12) and stands for the situation
where there is no subspace interference. The last relation
(14) means that the subspace interference is dominated by
the noise.

3. Case 1: known SOI, known SI and known noise
variance

First, let us consider the scenario where the two SOI,
the SI and the noise variance are known, i.e., s1, s2, s and
s2 are known parameters. Let d1 be the SRL for the
considered case. We define the new observation vector
z9y�Asþ�Cs.

3.1. Binary hypothesis test

With the aforementioned framework, the hypothesis
test (2) becomes

H0 : z¼ v	 CN ð0,s2IÞ,

H1 : z¼wd1þv	 CN ðwd1,s2IÞ,

(
ð15Þ

in which w9Bs�.

3.2. Constrained MLE (CMLE) and GLRT

As d1 2 R, one has to find the constrained MLE (CMLE)
of d1. More precisely, the constrained optimization pro-
blem can be written according to

arg min
d1

Lðz,d1Þ subject to d1 2 R,

where Lðz,d1Þ is the negative log-likelihood function.
According to Appendix A.1, the CMLE is

d̂1 ¼
RfwHzg

JwJ2
, ð16Þ

where JwJ2
¼ sH
�BHBs� ¼ 1

4 Js�J
2J _aJ2. Using (16), the

statistic of the GLRT is then given by

GðzÞ ¼
pðz; d̂1,H1Þ

pðz;H0Þ
¼ exp

1

s2
ðJzJ2
�Jz�wd̂1J

2
Þ

� �
_

H1

H0

Z0:

ð17Þ

Plugging (16) into (17), and defining a new statistic,
denoted by TðzÞ, one obtains

TðzÞ92 ln GðzÞ ¼
2

s2
ðd̂1zHwþ d̂1wHz�d̂

2

1JwJ2
Þ

¼
2RfwHzg

s2JwJ2
ðwHzþzHw�RfwHzgÞ ¼

R2
fwHzg

JwJ2s2

2

: ð18Þ
Using the result of Appendix B, we have

TðzÞ 	
w2

1 under H0,

w2
1ðl1ðPfa,PdÞÞ under H1,

(

where the non-centrality parameter is given by

l1ðPfa,PdÞ ¼
2d2

1

s2
JwJ2

¼
d2

1

2s2
Js�J

2J _aJ2, ð19Þ

and where w2
1 denotes the central distribution with one

degree of freedom. Since GðzÞ_H1
H0
Z03TðzÞ_H1

H0
Z9ln Z0, the

probability of false alarm and the probability of detection
are then given by Pfa ¼Qw2

1
ðZÞ and Pd ¼Qw2

1
ðl1ðPfa ,PdÞÞ

ðZÞ, res-

pectively, in which Qw2
1
ð�Þ and Qw2

1
ðl1ðPfa ,PdÞÞ

ð�Þ denote the

right tail of the w2
1 pdf and the w2

1ðl1ðPfa,PdÞÞ pdf, respec-

tively. In practice l1ðPfa,PdÞ can be derived for a given Pfa

and Pd as the solution of Q�1
w2

1
ðPfaÞ ¼Q�1

w2
1
ðl1ðPfa ,PdÞÞ

ðPdÞ.

3.3. Theoretical SINR derivation
Result 1. The minimum SINR required to resolve two
closely spaced known SOI (w.r.t. the SRL d1) imbedded in
M�2 known sources in a known noise variance, is given by

SINR1 ¼
Js1J

2
þJs2J

2

JsJ2
þd2

1

2JwJ2

l1ðPfa,PdÞ

: & ð20Þ

Result 2. The minimum SNR (w.r.t. the SRL d1) required to
resolve two closely spaced known SOI in a known noise
variance is given by

SNR1 ¼ l1ðPfa,PdÞ
Js1J

2
þJs2J

2

2d2
1JwJ2

: & ð21Þ

Result 3. If the SOI are orthogonal signals, i.e., sH
1 s2 ¼

sH
2 s1 ¼ 0, then Js�J

2
¼ Js1J

2
þJs2J

2. The minimum SNR
required to resolve two closely spaced SOI is given by

SNR1o ¼
2l1ðPfa,PdÞ

d2
1J _aJ

2
: & ð22Þ

The last result means that the minimum SNR required
to resolve two closely spaced SOI for orthogonal SOI is
invariant to the source powers.

3.4. Alternative expression of the non-centrality parameter

Let ½d1 s2�T be the vector collecting the parameters
under H1. The associated CRBðd1Þ which is derived in
Appendix C.1 is given by

CRBðd1Þ ¼
s2

2JwJ2
¼

2s2

Js�J
2J _aJ2

:

Consequently, (19) can be rewritten w.r.t. the CRB as

l1ðPfa,PdÞ ¼ d2
1 CRB�1

ðd1Þ: ð23Þ

Note that (23) is an expression where d1 is the unknown
variable. This is in agreement with the formulation intro-
duced in Ref. [7].
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4. Case 2: known SOI, unknown SI, known noise variance

4.1. Binary hypothesis test

In the following, we consider the case where two known
SOI are imbedded in M�2 unknown interfering sources.
In addition, the noise variance is assumed to be known.
Consequently, the observations under each hypothesis are
given by

H0 : z9y�Asþ ¼ Csþv	 CN ðCs,s2IÞ,

H1 : z¼ d2wþCsþv	 CN ðd2wþCs,s2IÞ,

(
ð24Þ

where d2 denotes the SRL.

4.2. Joint CMLE and GLRT

As d2 2 R, one has to find jointly the CMLE of the SRL
and the MLE of the interfering sources. Let us reorganize
the observation according to z¼Qpþv where Q ¼ ½w C�
and p¼ ½d2 sT �T , then the constrained optimization pro-
blem can be written according to

arg min
p

Lðz,pÞ subject to eT
1p 2 R, ð25Þ

where e1 ¼ ½1 0 . . . 0�T and Lðz,pÞ is the negative log-like-
lihood function of the observation. According to Appendix
A.3, we have

d̂2 ¼
RfwHP?C zg

JP?C wJ2
, ð26Þ

ŝH0
¼ Cyz, ð27Þ

ŝH1
¼ Cyðz�d̂wÞ, ð28Þ

where y stands for the Moore–Penrose pseudo-inverse [21].
Consequently using (26)–(28), one obtains

v̂H0
¼ z�CŝH0

¼ P?C z under H0,

v̂H1
¼ z�d̂w�CŝH1

¼ P?C z�P?C w
RfwHP?C zg

JP?C wJ2
under H1:

8>><
>>:

ð29Þ

Now, we are ready to use the statistic �T ðyÞ based on
the GLRT which is defined as follows:

�T ðzÞ92 ln GðzÞ ¼
2

s2
ðJv̂H0

J2
�Jv̂H1

J2
Þ: ð30Þ

Plugging (29) in (30) and after some calculus, one obtains

�T ðzÞ ¼
2

s2

R2
fwHP?C zg

JP?C wJ2
¼

R2
f �wH �zg

s2

2
J �wJ2

, ð31Þ

where �z ¼ �U
H

z and where �w ¼ �U
H

w in which P?C ¼
�U �U

H
is

any orthogonal decomposition for which �U
H �U ¼ I [22,

Eq (A.4.7)]. The statistics of the random variable �z follow:

�zH0
	 CN ð0,s2IÞ under H0,

�zH1
	 CN ð �wd2,s2IÞ under H1,

(
ð32Þ

since �U
H

C ¼ 0. Expressions (31) and (32) are formally
similar to the case studied in Appendix B. So, we can
conclude that

�T ðzÞ 	
w2

1 under H0,

w2
1ðl2ðPfa,PdÞÞ under H1,

(
ð33Þ

where

l2ðPfa,PdÞ ¼
2d2

2

s2
JP?C wJ2: ð34Þ

4.3. Theoretical SINR derivation

From (34), one can state the following results:

Result 4. The minimum SINR (w.r.t. the SRL d2) required to
resolve two closely spaced known SOI imbedded in M�2
unknown sources in a known noise variance is given by

SINR2 ¼
Js1J

2
þJs2J

2

JsJ2
þd2

2

2JP?C wJ2

l2ðPfa,PdÞ

: & ð35Þ

Result 5. The minimum SNR (w.r.t. the SRL d2) required to
resolve two closely spaced known SOI with a known noise
variance is obtained for P?C ¼ I and s¼ 0 and thus is given by

SNR2 ¼ l2ðPfa,PdÞ
Js1J

2
þJs2J

2

2d2
2JwJ2

: & ð36Þ

Result 6. If the SOI are orthogonal. The minimum SNR
required to resolve two closely spaced SOI is given by

SNR2o ¼
2l2ðPfa,PdÞ

d2
2J _aJ

2
: & ð37Þ

The last result means that the minimum SNR required
to resolve two closely spaced orthogonal SOI is invariant
to the source powers.

4.4. Alternative expression of the non-centrality parameter

In [23], the interference Cramér–Rao bound (I-CRB) has
been introduced. This bound is the CRB for the unknown
parameter ½d2 s2�T and for the projected observation �z ¼
�U

H
z. So, this bound integrates the subspace interference

related to /CS. More precisely, this bound takes the follow-
ing form:

I-CRBðd2Þ ¼
s2

2JP?C wJ2
:

See Appendix C.2 for the proof. Consequently, using
(34), one deduces the relationship between the I-CRB and
the non-centrality parameter

l2ðPfa,PdÞ ¼ d2
2I-CRB�1

ðd2Þ: ð38Þ

5. Case 3: unknown SOI, unknown SI and known noise
variance

5.1. Binary hypothesis test

In the following, we consider the case where two
unknown sources are imbedded in M�2 unknown sources.
The noise variance is assumed to be known. Consequently,
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the observations under each hypothesis are given by

H0 : y¼Dgþv	 CN ðDg,s2IÞ,

H1 : y¼ BhþDgþv	 CN ðBhþDg,s2IÞ,

(
ð39Þ

where D9½A C� 2 CNL�ðM�1ÞL, in which the unknown vector
parameters h and g are defined by

h9d3s�,

g9
sþ
s

� �
,

where d3 is the SRL.

5.2. Unconstrained MLE and GLRT

The unconstrained MLEs of the unknown parameters
are given by [24]

ĥ ¼ ðBHP?D BÞ�1BHP?D y, ð40Þ

ĝH0
¼ ðDHDÞ�1DHy, ð41Þ

ĝH1
¼ ðDHP?B DÞ�1DHP?B y, ð42Þ

where P?D9I�PD, in which PD denotes the orthogonal
projector onto the subspace spanned by the columns of
the matrix D.

Consequently, the MLEs of the noise are

v̂H0
¼ z�Dĝ ¼ P?D y under H0,

v̂H1
¼ z�Bĥ�Dĝ ¼ ðI�EBD�EDBÞz¼ P?½BD�y under H1,

8<
:

ð43Þ

where the oblique projectors EBD and EDB are defined as

EBD ¼ BðBHP?D BÞ�1BHP?D , ð44Þ

EDB ¼DðDHP?B DÞ�1DHP?B : ð45Þ

Now, we are ready to use the statistic T 0ðyÞ based on
the GLRT and defined as follows:

T 0ðyÞ92 ln GðyÞ ¼
2

s2
ðJv̂H0

J2
�Jv̂H1

J2
Þ ð46Þ

T 0ðyÞ ¼
1

s2
yHðP?D�P?½BD�Þy: ð47Þ

Using [16, Eq. (3.7)] and [24, Eq. (19)], one has
P?D�P?½BD� ¼ P?D EBDP?D ¼ PP?D B. Thus,

T 0ðyÞ ¼
2

s2
yHPP?D By: ð48Þ

Let PP?D B ¼UUH be any orthogonal decomposition [22]
of the projector PP?D B such that UHU ¼ I and define an
auxiliary random variable ~y ¼UHy. One should note that

~y ¼UHv	 CN ð0,s2IÞ under H0,

~y ¼UHBhþUHv	 CN ðUHBh,s2IÞ under H1:

(
ð49Þ

Consequently,

T 0ðyÞ 	
w2

2r under H0,

w2
2rðl3ðPfa,PdÞÞ under H1,

(
ð50Þ
where [17] r¼ trðPP?D BÞ ¼ rankðPP?D BÞ ¼ L and

l3ðPfa,PdÞ ¼
hHBHUUHBh

s2=2
¼

2d2
3

s2
sH
�BHPP?D BBs�

¼
2d2

3

s2
JP?D wJ2: ð51Þ

Note that the non-centrality parameter l3ðPfa,PdÞ can
be numerically computed as the solution of Q�1

w2
2L
ðPfaÞ ¼

Q�1
w2

2L
ðl3ðPfa ,PdÞÞ

ðPdÞ.

5.3. Theoretical SINR derivation

From (51), one can state the following results:

Result 7. The minimum SINR (w.r.t. the SRL d3) required
to resolve two closely spaced unknown SOI imbedded in
M�2 unknown sources with a known noise variance is
given by

SINR3 ¼
Js1J

2
þJs2J

2

JsJ2
þd2

3

2JP?D wJ2

l3ðPfa,PdÞ

: & ð52Þ

Result 8. The minimum SNR (w.r.t. the SRL d3) required to
resolve two closely spaced unknown SOI with a known
noise variance is given by

SNR3 ¼ l3ðPfa,PdÞ
Js1J

2
þJs2J

2

2d2
3JP?A wJ2

: & ð53Þ

A straightforward derivation leads to

JP?A wJ2
¼ 1

4Js�J
2JbJ2, ð54Þ

where b¼ _a�ðaH _a=LÞa and JbJ2
¼ J _aJ2

�9aH _a92
=L.

Result 9. If the SOI are orthogonal. The minimum SNR
required to resolve two closely spaced SOI is given by

SNR3o ¼
2l3ðPfa,PdÞ

d2
3JbJ2

: & ð55Þ

The last result means that the minimum SNR required
to resolve two closely spaced orthogonal SOI is invariant
to the source powers.

5.4. Alternative expression of the non-centrality parameter

In the case of unknown SOI, the FIM is not invertible,
therefore the CRB of d3 does not exist. This arises due to
the lack of identifiability in model (39) because of multi-
plicative ambiguity in the product d3s�. To obtain an
invertible FIM, it is necessary to assume known SOI as in
cases 1 and 2. Note that if, as in case 3 (and also the
following case, i.e., case 4), the vector of interest is
h¼ d3s�, there is no ambiguity and it exists an unbiased
estimator (and thus the CRB) of h. Keeping in mind this
fact, it is interesting to note that the I-CRB (as derived in
Appendix C.2) for the unknown parameters d3 w.r.t. the
interference subspace /DS and for known SOI is given by

I-CRBðd3Þ ¼
s2

2JP?D wJ2
:



3 In this section, Pfa ,Pd are dropped from lðPfa ,PdÞ for the sake of

simplicity.
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This can be linked to the non-centrality parameter in (51)
according to

l3ðPfa,PdÞ ¼ d2
3I-CRB�1

ðd3Þ: ð56Þ

6. Case 4: unknown SOI, unknown SI and unknown noise
variance

6.1. Binary hypothesis test

In the following, we consider the general case where two
unknown sources are imbedded in M�2 unknown sources.
In addition, s2 is assumed to be unknown. Let d4 be the SRL.
The observations under each hypothesis are given by

H0 : y¼Dgþv	 CN ðDg,s2IÞ,

H1 : y¼ BhþDgþv	 CN ðBhþDg,s2IÞ:

(
ð57Þ

6.2. The GLRT derivation

From (57), the GLRT is given by

GðyÞ ¼
ŝ2

0

ŝ2
1

¼
Jv̂H0

J2

Jv̂H1
J2

, ð58Þ

where the MLE of the noise variance under each hypoth-
esis is given by [25]

ŝ2
i ¼

1

NL
Jv̂Hi

J2: ð59Þ

After some straightforward derivations, we obtain

v̂H0
¼ y�DĝH0

¼ P?D y under H0,

v̂H1
¼ y�BĥH1

�DĝH1
¼ ðI�EBD�EDBÞy¼ P?½BD�y under H1,

8<
:

ð60Þ

and where ĥ, ĝH0
and ĝH1

are given by (40)–(42), res-
pectively. In this case it is more convenient to define the
statistic T 00ðyÞ as follows:

T 00ðyÞ9ðln GðyÞÞ1=NL
�1¼

T 0ðyÞ

NðyÞ
, ð61Þ

where NðyÞ ¼ ð1=s2ÞyHP?½BD�y. In addition, using any ortho-
gonal decomposition [22], one has P?½BD� ¼U 0U 0H . Conse-
quently, NðyÞ ¼ JyJ2, in which y ¼U 0Hy. Thus,

T 00ðyÞ ¼
J ~yJ2

JyJ2
, ð62Þ

and

y ¼U 0Hv	 CN ð0,s2IÞ under H0,

y ¼U 0Hv	 CN ð0,s2IÞ under H1,

(

)
NðyÞ 	 w2

2r0 under H0,

NðyÞ 	 w2
2r0 ð0Þ under H1,

(

where r0 ¼ trðP?½BD�Þ ¼NL�rankðP½BD�Þ ¼ ðN�MÞL.
Furthermore, one can notice that the random variables

JyJ2 and J ~yJ2 are independent (see Appendix D). Conse-
quently, a new statistic VðyÞ is described as follows:

VðyÞ9ðN�MÞT 00ðyÞ 	
F2L,2ðN�MÞL under H0,

F2L,2ðN�MÞLðl4ðPfa,PdÞÞ under H1,

(
ð63Þ
where F2L,2ðN�MÞL and F2L,2ðN�MÞLðl4ðPfa,PdÞÞ denote the F

central and non-central distributions [15], respectively, of
2L and 2ðN�MÞL degrees of freedom, in which the non-
centrality parameter is given by

l4ðPfa,PdÞ ¼
2d2

4

s2
JP?D wJ2: ð64Þ

Once again, note that the non-centrality parameter

l4ðPfa,PdÞ can be computed numerically as the solution of

Q�1
F2L,2ðN�MÞL

ðPfaÞ ¼Q�1
F2L,2ðN�MÞLðl4ðPfa ,PdÞÞ

ðPdÞ with 2L and 2ðN�MÞL

degree of freedom, where Q�1
F2L,2ðN�MÞL

ðbÞ and Q�1
F2L,2ðN�MÞLðl4ðPfa ,PdÞÞ

ðbÞ

denote the right tail of the pdf F2L,2ðN�MÞL and F2L,2ðN�MÞL

ðl4ðPfa,PdÞÞ, respectively, starting at b.

6.3. Theoretical SINR derivation

From (64), one can state the following results:

Result 10. The minimum SINR (w.r.t. the SRL d4) required
to resolve two closely spaced unknown SOI imbedded in
M�2 unknown sources with an unknown noise variance
is given by

SINR4 ¼
Js1J

2
þJs2J

2

JsJ2
þd2

4

2JP?D wJ2

l4ðPfa,PdÞ

: & ð65Þ

Result 11. The minimum SNR required (w.r.t. the SRL d4)
required to resolve two closely spaced unknown SOI with
an unknown noise variance is given by

SNR4 ¼ l4ðPfa,PdÞ
Js1J

2
þJs2J

2

2d2
4JP?A wJ2

: & ð66Þ

As in case 3, the minimum SNR required to resolve two
closely spaced orthogonal SOI is given by the following
result:

Result 12. If the SOI are orthogonal. The minimum SNR
required to resolve two closely spaced SOI is given by

SNR4o ¼
2l4ðPfa,PdÞ

d2
4JbJ2

: & ð67Þ

The last result means that the minimum SNR required
to resolve two closely spaced orthogonal SOI is invariant
to the source powers.

6.4. Alternative expression of the non-centrality parameter

As in case 3, the I-CRB defined in Appendix C.2 for the
unknown parameter ½d4 s2�T w.r.t. the interference sub-
space /DS with known SOI can be linked to the non-
centrality parameter, given in (64), according to

l4ðPfa,PdÞ ¼ d2
4I-CRB�1

ðd4Þ: ð68Þ

7. Summary of results and discussion

The studied cases are summarized in Table 1.3



Table 1
Summary of results with w¼ Bs� and D¼ ½A C�.

SOI SI Noise variance The distribution

used to compute l
SINR for MZ2 SNR for M¼2

Case 1 Known Known Known w2
1 Js1J

2
þJs2J

2

JsJ2
þ

2

l1
d2

1JwJ2
l1

Js1J
2
þJs2J

2

2d2
1JwJ2

Case 2 Known Unknown Known w2
1 Js1J

2
þJs2J

2

JsJ2
þ

2

l2
d2

2JP?C wJ2
l2

Js1J
2
þJs2J

2

2d2
2JwJ2

Case 3 Unknown Unknown Known w2
2L Js1J

2
þJs2J

2

JsJ2
þ

2

l3
d2

3JP?D wJ2
l3

Js1J
2
þJs2J

2

2d2
3JP?A wJ2

Case 4 Unknown Unknown Unknown F2L,2ðN�MÞL Js1J
2
þJs2J

2

JsJ2
þ

2

l4
d2

4JP?D wJ2
l4

Js1J
2
þJs2J

2

2d2
4JP?A wJ2

Fig. 2. Behavior of the non-central parameter of w2
n versus n the degree

of freedom for different values of Pd and for a fixed Pfa ¼ 0:01.
Fig. 3. SINRmin required to resolve two SOI w.r.t. the SRL for the studied

cases.
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Toward the comparison of the studied cases, we for-
mulate the three following propositions:
P1.
 First, as shown in Fig. 2, an increasing the number of
the unknown parameter increases the degree of free-
dom of the w2

n distribution used to derive l, which will
increase the value of l and consequently,

l1 ¼ l2rl3: ð69Þ
P2.
 Second, considering the noise variance as unknown
parameter will produce a F distribution to compute
the desired non-centrality parameter (see case 4). As
a consequence, the non-centrality parameter com-
puted w.r.t. w2

n distribution is lower than the non-
centrality parameter computed w.r.t. F distribution for
any Pd4Pfa [26], meaning that

l3rl4: ð70Þ
P3.
 On the other hand, note that /CS 
 /DS, where /CS
and /DS denote the subspace spanned by the column
of the matrices C and D, respectively. Consequently
we have 8w: wHPCwrwHPDw and thus

JP?wJ2rJP?wJ2rJwJ2: ð71Þ
D C
rom P1, P2 and P3 and for the same SRL (i.e.,
F
d1 ¼ d2 ¼ d3 ¼ d4), one deduces that
SINR1rSINR2rSINR3rSINR4:

The same analysis can be done in the case of M¼2 (no
interference), i.e.,

SNR1rSNR2rSNR3rSNR4,

SNR1orSNR2orSNR3orSNR4o:

In Fig. 3, we have reported the minimum SINR required to
resolve two closely spaced SOI w.r.t. the SRL obtained in all
cases. The gap between cases 1 and 2 is evaluated around
10 dB and it is especially due to the projector P?C . The
difference between cases 2 and 3 is around 25 dB. This loss
is considerably high because it is due to the projector P?D but
also to the higher degree of freedom for l3. Finally, the gap
between cases 3 and 4 is about only 0.5 dB and it is produced
by the difference in the distribution used to compute the
desired l4. In conclusion, the difference between the studied
cases is mainly due to
�
 the non-centrality parameter numerical value,

�
 the effect of the subspace interference according to the

projection onto /CS or /DS.



Fig. 4. (left) SINR to resolve two known/unknown closely far-field SOI with known noise variance for an ULA where N¼10, d¼ n=2 and M¼4 in which

Do ¼ 0:75. (right) The minimum SINR required to resolve two closely spaced SOI for an ULA where N¼10, d¼ n=2, for different number of sources and Do .
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Fig. 5. The required SINR to resolve two BPSK unknown orthogonal/non-

orthogonal closely far-field sources for an ULA where N¼10, d¼ n=2 and

M¼4.
8. Numerical analysis

This section is devoted to the numerical analysis of the
minimum SINR required to resolve two closely spaced SOI
w.r.t. the SRL. Furthermore, we have considered equal inter-
ference’s power and broadband noise’s power (INR ¼ 1) and
thus SINR¼ 1

2 SNR. The number of snapshots is equal to L¼

100 where n¼ 0:5 m and ðPfa,PdÞ ¼ ð0:01,0:99Þ. The SRL w.r.t.

the two closest sources (the SOI) is denoted by d, where all
the remain sources are equally spaced by Do (where Do4d).

8.1. Effect on the source prior

The prior knowledge on the source amplitudes and
source phases is known to have a considerable effect on
the estimation accuracy [27]. One could expect the same
behavior concerning the resolution limit. From Fig. 4(left)
one can notice the effect of the sources prior knowledge
on the SRL. Indeed, the SRL depends strongly on the prior

sources knowledge, e.g., the minimum SINR required to
resolve two closely spaced known SOI w.r.t. d is approx-
imatively 40 dB less than the minimum SINR required to
resolve two closely spaced unknown SOI.

8.2. Effect of the subspace interference

In Fig. 4(right), we have reported the effect of additional
sources (considered as a subspace interference) on the
minimum SINR required to resolve two closely spaced SOI.
One can distinguish two cases:
1.
 The first one represents the scenario where Dobd. In
this case, one can notice that the additional sources do
not affect the SINR. This can be explained by the fact
that the high resolution algorithms have asymptoti-
cally an infinite resolving power [19].
2.
4 For example, an ULA of N sensors will be represented as

AN,N�1 ¼ ½0;1, . . . ,N�1�, where the subscript N�1 is related to the array

aperture (i.e., the distance between the first and the last sensor is equal

to ðN�1Þd where d¼ n=2 [29].)
The second scenario is for Do4d. In this case, one can
notice the drastic effect of the interfering sources. For
example, the SINR gap between M¼4 and M¼6 scenar-
ios is evaluated around 30 dB.

8.3. Orthogonal SOI

From an estimation point of view, it is well-known that
the estimation accuracy for orthogonal signal sources
outperforms the estimation accuracy for the non-orthogonal
signal sources [28]. One expect the same behavior concern-
ing the minimum SINR required to resolve two closely
spaced SOI. In fact, as shown in Fig. 5, the minimum SINR
required to resolve two closely spaced SOI in the case of
non-orthogonal binary phase-shift keying (BPSK) signal
sources is greater than the case of orthogonal BPSK signal
sources. This loss is around 3 dB.

8.4. Analysis for nonuniform arrays

The effect of the nonuniform antenna array is studied
in the following. The linear array will be specified by their
array aperture and their sensor positions.4
�
 First, let us study the effect of the number of sensors
on the SRL (or, equivalently, on the minimum SINR
required to resolve two closely spaced sources). In
Table 2 are listed different array geometries with five,
six, seven and nine sensors. The array with nine sensors
is an ULA, whereas the others belong to the so-called



Fig. 6. (left) The required SINR to resolve two unknown closely spaced sources with known noise variance for different array geometries and same

aperture which N¼10, d¼ n=2 and M¼4 in which Do ¼ 1:5. (right) The required SNR to resolve two known sources using ULA, Type 4 and Type 5

geometries where Pfa ¼ 0:01 and Pd¼0.99.

Table 2
Characteristic of different array geometries with different number of sensors and with the same array aperture.

Array type Sensor positions N Aperture Redundant lags Missing gaps

Minimum redundancy A5;8 ½0;1,2;5,8� 5 8d R¼ f1;3g G¼ fg

Minimum redundancy A6;8 ½0;1,2;3,6;8� 6 8d R¼ f1;2,3;5,6g G¼ fg

Minimum redundancy A7;8 ½0;1,2;4,5;6,8� 7 8d R¼ f1;2,3;4,5;6g G¼ fg

ULA A9;8 ½0;1,2;3,4;5,6;7,8� 9 8d R¼ f1;2,3;4,5;6,7g G¼ fg

Table 3
Characteristic of different array geometries with the same number of

sensors and different array aperture. The so-called perfect array contains

no redundancy lag and no gap.

Array type Sensor

positions

N Aperture Redundant

lags

Missing

gaps

Perfect array A4;6 ½0;1,4;6� 4 6d R¼ fg G¼ fg

A04;6 ½0;1,2;6� 4 6d R¼ f1g G¼ f3g

Minimum

redundancy A4;5

½0;1,2;5� 4 5d R¼ f1g G¼ fg
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‘‘optimal’’ nonuniform array geometries [30]. More
precisely, an exhaustive search has been done to select
the minimum redundancy arrays with five, six and
seven sensors with an aperture equals to 8d (recall that
the minimum redundancy arrays minimize the number
of redundant lags R such that no missing lags will be
present). From Fig. 6(left) one can notice, for the same
array aperture, that the minimum SINR required to
resolve two closely spaced SOI is slightly sensitive to
the number of sensors. The gap for ULA of five sensors
and the one for nine sensors (having the same array
aperture) is evaluated at 2 dB.

�
 Finally, let us consider the case of different LA geometries

with the same number of sensors. In Table 3 are reported
different array geometries for N¼4 sensors with different
apertures. One can notice, from Fig. 6(right), that the array
aperture affects the minimum SINR required to resolve
two closely spaced SOI is around 2 dB. On the other hand,
one can notice that the SRL for arrays of the same
aperture with different array geometries are affected by
only 1 dB (i.e., between the so-called perfect array A4;6

and any array A04;6). Meaning that, the SRL is only slightly
sensitive to the array design (for the same array aperture).
In this paper, we have linked theoretical expressions of
9. Conclusion

the minimum signal-to-interference-plus-noise ratio (SINR)
required to resolve two closely spaced far-field narrowband
sources among a total number of MZ2 impinging on a
linear nonuniform array, and the statistical-resolution-limit
(SRL). The two sources of interest (SOI) are corrupted by (1)
the interference resulting from the M�2 remaining sources
and by (2) a broadband noise. Since our approach is based on
the detection theory, these expressions provide useful infor-
mation concerning the resolution limit for a given couple of
probability of false alarm and probability of detection. In
addition, the theoretical SINR required to resolve two SOI
and the SRL have been analyzed with respect to the inter-
ference (resulting from the M�2 other sources), the array
geometry and the aperture, the prior sources knowledge or
their orthogonality.

Appendix A

A.1. Derivation of the CMLE for cases 1 and 2

A.1.1. MLEs for case 1

The negative log-likelihood function is given by

Lðz,dÞ ¼�ln pðzÞ ¼�lnðps2Þ
�NL=2

þs�2Jz�wdJ2:

The optimization problem is given by

arg min
d

Lðz,dÞ subject to d 2 R:

This problem can be solved by the Lagrange multiplier
method. Let W be a real Lagrange multiplier, then the
Lagrange function is given by

Lðd,WÞ ¼ Lðz,dÞþWIðdÞ:
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The condition IðdÞ ¼ 0 can be rewritten according to
�j 1

2 ðd�d
n
Þ ¼ 0. So, the partial derivatives of the Lagrange

function are

@L
@d
¼ s�2ðJwJ2dn

�zHwÞ�j
W
2

,

@L
@W
¼IðdÞ:

8>><
>>:
since @dn=@d¼ 0. By letting @L=@d9d0

¼ 0, we have

d0 ¼
wHz

JwJ2
�j

Ws2

2JwJ2
: ð72Þ

Setting @L=@W9W0
¼ 0, we have

Iðd0Þ ¼I
wHz

JwJ2

� �
�

Ws2

2JwJ2
¼ 0:

Consequently, the Lagrange multiplier is given by

W0 ¼
2

s2
IfwHzg:

Plugging the above expression in (72), we have

d̂ ¼
wHz

JwJ2
�jI

wHz

JwJ2

� �
¼

RfwHzg

JwJ2
, ð73Þ

by using Rfag ¼ a�jIfag.

A.1.2. MLEs for case 2

The negative log-likelihood function is given by

Lðz,dÞ ¼�ln pðzÞ ¼�lnðps2Þ
�NL=2

þs�2Jz�QpJ2:

The optimization problem is given by

arg min
p

Lðz,pÞ subject to eT
1p 2 R,

where e1 ¼ ½1 0 � � � 0�T .
This problem can be solved by the Lagrange multiplier

method. Let W be a real Lagrange multiplier, then the
Lagrange function is given by

Lðp,WÞ ¼ Lðz,pÞþWIðeT
1pÞ:

The condition IðeT
1pÞ ¼ 0 can be rewritten according to

�j 1
2 ðe

T
1p�eT

1pnÞ ¼ 0. So, the partial derivatives of the
Lagrange function are

@L
@p
¼ s�2ðQ T Qnpn�Q T znÞ�j

W
2

e1,

@L
@W
¼IðeT

1pÞ,

8>><
>>:
since @pn=@p¼ 0. By letting @L=@p9p0

¼ 0, we have

p0 ¼Q yz�j
Ws2

2
ðQ HQ Þ�1e1: ð74Þ

By setting @L=@W9W0
¼ 0, we have

IðeT
1p0Þ ¼ IðeT

1Q yzÞ�
W0s2

2
h¼ 0,

where we have defined the real quantity h¼ eT
1ðQ

HQ Þ�1e1.
Consequently, the Lagrange multiplier is given by

W0 ¼
2

s2h
IðeT

1Q yzÞ:
Plugging the above expression into (74), we have

p̂ ¼Q yz�j
1

h
ðQ HQ Þ�1e1IðeT

1Q yzÞ: ð75Þ

CMLE of the SRL: The estimate of the SRL is given by

d̂ ¼ eT
1p̂ and thus,

d̂ ¼ eT
1Q yz�jIðeT

1Q yzÞ: ð76Þ

Now, remark that Rfag ¼ a�jIfag, then

d̂ ¼RfeT
1Q yzg: ð77Þ

In addition, using the inverse of a block matrix and the
Schur complement [10], we have

eT
1Q y ¼ ‘wHþuHCH , ð78Þ

where

‘¼
1

JwJ2
�wHCðCHCÞ�1CHw

¼
1

JP?C wJ2
, ð79Þ

uH ¼�
wHCðCHCÞ�1

JP?C wJ2
: ð80Þ

Thus

eT
1Q y ¼

wHP?C
JP?C wJ2

: ð81Þ

Using (77) and (81), we have (26).
MLE of the interfering sources: The estimate of the inter-

fering sources is given by ŝ ¼ Jp̂ where J ¼ ½0ðM�2ÞL�1 IðM�2ÞL�

is an ððM�2ÞLÞ � ððM�2ÞLþ1Þ selection matrix. We have

ŝ ¼ JQ yz�j
1

h
JðQ HQ Þ�1e1IfeT

1Q yzg: ð82Þ

Let us define the following matrix:

G9ðCHCÞ�1 Iþ
CHwwHCy

H

JP?C wJ2

 !
, ð83Þ

and observe the following equalities:

JQ y ¼ uwHþGCH
¼ Cy�

1

JP?C wJ2
CywwHP?C , ð84Þ

1

h
JðQ HQ Þ�1e1 ¼

1

h
½u G�e1 ¼

1

h
u¼�Cyw: ð85Þ

Plugging the two above expressions and (81) into (82),
we obtain

ŝ ¼ Cyz�
CywwHP?C
JP?C wJ2

zþ jCywI
wHP?C z

JP?C wJ2

( )
ð86Þ

ŝ ¼ Cyz�Cyw
wHP?C z

JP?C wJ2
�jI

wHP?C z

JP?C wJ2

( ) !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d̂

ð87Þ

ŝ ¼ Cyðz�wd̂Þ: ð88Þ

A.2. Statistic of the random variable R2
fwHyg=ðs2=2ÞJwJ2

Let us consider a random variable y¼ dwþv corrupted
by a zero-mean white circular Gaussian noise v of
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variance s2. We recall that a circular random variable
means [22] Rfvg 	N ð0,ðs2=2ÞIÞ, Ifvg 	N ð0,ðs2=2ÞIÞ and
EðRfvgIfvgT Þ ¼ EðIfvgRfvgT Þ ¼ 0. So,

yH0
	 CN ð0,s2IÞ,

yH1
	 CN ðdw,s2IÞ:

(
ð89Þ

Let u¼RfwHyg. The mean of variable u is given by
JwJ2d and its variance is

Cu ¼ EfðRfwHyg�JwJ2dÞ2g ¼ EfR2
fwHvgg

¼ EfðRfwHgRfvg�IfwHgIfvgÞ2g

¼ EfðRfwgTRfvgþIfwgTIfvgÞ2g:

Consequently, using the circularity of the noise, one
obtains

Cu ¼RfxgT EðRfvgRfvgT Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðs2=2ÞI

RfxgþIfxgT EðIfvgIfvgT Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ðs2=2ÞI

Ifxg ð90Þ

þRfxgT EðRfvgIfvgT Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

IfxgþIfxgT EðIfvgRfvgT Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

Rfxg, ð91Þ

Cu ¼
s2

2
JwJ2: ð92Þ

Let us define a new statistic as follows:

TðyÞ ¼
D u2

Cu
¼

R2
fwHyg

s2

2
JwJ2

: ð93Þ

Thus, according to [15], we have TðyÞ 	 w2
1ðlÞ in which

w2
1ðlÞ denotes the non-central chi-square distribution with

one degree of freedom where the non-centrality para-
meter is given by

l9
EðuÞ2

Cu
¼

2d2
JwJ2

s2
: ð94Þ

A.3. Derivation of the CRB and the I-CRB

In this appendix, we derive the CRB (Cramér–Rao
Bound) and the so-called I-CRB (interference CRB) [23].

Let Efð �̂H� �HÞð �̂H� �HÞT g be the covariance matrix of an

unbiased estimator, �̂H , of the deterministic parameter

vector �H. The covariance inequality principle states that,
under quite general/weak conditions, the variance satis-

fies: MSEð½ �̂H �iÞ ¼ Efð½ �̂H �i�½ �H�iÞ
2
gZ ½CRBð �HÞ�i,i where

CRBð �HÞ ¼ FIM�1
ð �HÞ, in which FIM denotes the Fisher

Information Matrix. The ðith,kthÞ element of the FIM for

the parameter vector �H can be written (for a complex
circular Gaussian observation model) as [22]

½FIMð �HÞ�i,k ¼ tr R�1 @R

@½ �H�i
R�1 @R

@½ �H�k

( )

þ2R
@lH

@½ �H�i
R�1 @l

@½ �H�k

( )
, ð95Þ

where R and l denote the covariance matrix and the

mean of the observation vector model, respectively.
A.3.1. Derivation of the CRB

Let us consider the estimation of the real parameter of
interest d, where the observation model is as follows:

z¼ dwþv, ð96Þ

where v	 CN ð0,s2IÞ whereas d, w and s2 are determi-
nistic parameters. Thus z	 CN ðl¼ dw,R¼ s2IÞ. The
unknown deterministic parameter vector is defined as
�H ¼ ½d s2�T . Using (95), the CRB w.r.t. d for the observation

(96) is given by

CRBðdÞ ¼
2

s2
R

@l
@d

� �H @l
@d

( )" #�1

¼
s2

2
wk k2 ð97Þ

since it is well-known that d and s2 are decoupled
(diagonal FIM).

A.3.2. Derivation of the I-CRB

Now, let us consider the estimation of the real para-
meter of interest d, where the observation model is
corrupted by a deterministic structured interference as
follows:

z¼ dwþCsþv: ð98Þ

Let us define the orthogonal projector and its ortho-
gonal decomposition according to P?C ¼

�U �U
H

which is a
null-steering operator that nulls everything in the inter-
ference space /CS [24]. Let us define a new observation
based on (98) as follows:

�z9 �U
H

z¼ d �U
H

wþ �v , ð99Þ

since �U
H �U ¼ I, one has �v ¼ �U

H
v	 CN ð0,s2IÞ and

z	 CN ðl¼ d �U
H

w,R¼ s2IÞ. The I-CRB [23] is the CRB for
the observation (99) related to the projector P?C where the
unknown vector parameter is given by �H. Consequently,
using (95) and after straightforward calculus, one obtains

I-CRBðdÞ ¼
2

s2
R

@l
@d

� �H @l
@d

( )" #�1

¼
s2

2
JP?C wJ2

ð100Þ

since it is well-known that d and s2 are decoupled
(diagonal FIM).

A.4. Independence of JyJ2 and J ~yJ2

Since EðyÞ ¼ 0 under H0 and H1, one has

Covðy , ~yÞ ¼ Eðy ~yH
Þ ¼U 0HEðyyHÞU

¼U 0HU 0U 0HEðyyHÞUUHU ¼U 0HP?½BD�EðyyHÞPP?D BU

¼U 0Hðs2P?½BD�PP?D BþðP
?
½BD�eÞðPP?D BeÞHÞU,

where e¼ BhþDg under H1 and e¼Dg under H0.
Note P?½BD�e¼ 0. And, on the other hand,

P?½BD�PP?D B ¼ P?D ðP
?
D EBD�EBDP?D EBDÞP

?
D

¼ ðP?D EBD�P?DEBDP?D EBDÞP
?
D

¼ ðP?D EBD�P?DEBDÞP
?
D ¼ 0:

Consequently, Covðy , ~yÞ ¼ 0: Meaning that y and ~y are
uncorrelated. Thus, they are independent in the normal
distribution case [25]. Consequently, it is straightforward
to conclude that JyJ2 and J ~yJ2 are also independent [16].



M.N. El Korso et al. / Signal Processing 92 (2012) 2471–2483 2483
References

[1] H. Krim, M. Viberg, Two decades of array signal processing
research: the parametric approach, IEEE Signal Processing Maga-
zine 13 (4) (1996) 67–94.

[2] H. Cox, Resolving power and sensitivity to mismatch of optimum
array processors, Journal of the Acoustical Society of America 54 (3)
(1973) 771–785.

[3] K. Sharman, T. Durrani, Resolving power of signal subspace meth-
ods for finite data lengths, in: Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing, FL, USA,
1995, pp. 1501–1504.

[4] H.B. Lee, The Cramér–Rao bound on frequency estimates of signals
closely spaced in frequency (unconditional case), IEEE Transactions
on Signal Processing 42 (6) (1994) 1569–1572.

[5] E. Dilaveroglu, Nonmatrix Cramér–Rao bound expressions for high-
resolution frequency estimators, IEEE Transactions on Signal Pro-
cessing 46 (2) (1998) 463–474.

[6] H.B. Lee, The Cramér–Rao bound on frequency estimates of signals
closely spaced in frequency, IEEE Transactions on Signal Processing
40 (6) (1992) 1507–1517.

[7] S.T. Smith, Statistical resolution limits and the complexified Cra-
mér–Rao bound, IEEE Transactions on Signal Processing 53 (May)
(2005) 1597–1609.

[8] M.N. El Korso, R. Boyer, A. Renaux, S. Marcos, Statistical resolution
limit for the multidimensional harmonic retrieval model: hypothesis
test and Cramér–Rao bound approaches, EURASIP Journal on Advances
in Signal Processing 12 (July) http://dx.doi.org/10.1186/1687-6180-
2011-12. (Special issue on Advances in Angle-of-Arrival and Multi-
dimensional Signal Processing for Localization and Communications).

[9] M. Shahram, P. Milanfar, Imaging below the diffraction limit: a
statistical analysis, IEEE Transactions on Image Processing 13 (5)
(2004) 677–689.

[10] M. Shahram, P. Milanfar, On the resolvability of sinusoids with
nearby frequencies in the presence of noise, IEEE Transactions on
Signal Processing 53 (7) (2005) 2579–2585.

[11] Z. Liu, A. Nehorai, Statistical angular resolution limit for point
sources, IEEE Transactions on Signal Processing 55 (11) (2007)
5521–5527.

[12] A. Amar, A. Weiss, Fundamental limitations on the resolution of
deterministic signals, IEEE Transactions on Signal Processing 56
(11) (2008) 5309–5318.

[13] A.J. den Dekker, A. van den Bos, Resolution, a survey, Journal of the
Optical Society of America 14 (January) (1997) 547–557.
[14] P. Stoica, V. Simonyte, T. Soderstrom, On the resolution perfor-
mance of spectral analysis, Elsevier Signal Processing 44 (January)

(1995) 153–161.
[15] S.M. Kay, Fundamentals of Statistical Signal Processing: Detection

Theory, vol. 2, Prentice Hall, NJ, 1998.
[16] L.L. Scharf, B. Friedlander, Matched subspace detectors, IEEE Trans-

actions on Signal Processing 42 (8) (1994) 2146–2157.
[17] L.L. Scharf, Statistical Signal Processing: Detection, Estimation, and

Time Series Analysis, Addison Wesley, Reading, 1991.
[18] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai, Exact and large sample

maximum likelihood techniques for parameter estimation and
detection in array processing, in: S. Haykin, J. Litva, T.J. Shepherd
(Eds.), Radar Array Processing, Springer-Verlag, Berlin, 1993,

pp. 99–151. (Chapter 4).
[19] H.L. VanTrees, Detection, Estimation and Modulation Theory:

Optimum Array Processing, vol. 4, Wiley, New York, 2002.
[20] R. Behrens, Subspace Signal Processing in Structured Noise, Ph.D.

Dissertation, University of Colorado, Boulder, US-CO, 1990.
[21] G.H. Golub, C.F.V. Loan, Matrix Computations, Johns Hopkins, London,

1989.
[22] P. Stoica, R. Moses, Spectral Analysis of Signals, Prentice Hall, NJ, 2005.
[23] R. Boyer, Oblique projection for source estimation in a competitive

environment: algorithm and statistical analysis, Elsevier Signal
Processing 89 (December) (2009) 2547–2554.

[24] R.T. Behrens, L.L. Scharf, Signal processing applications of oblique
projection operators, IEEE Transactions on Signal Processing 42 (6)

(1994) 1413–1424.
[25] S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory, vol. 1, Prentice Hall, NJ, 1993.
[26] M. Shahram, Statistical and Information-theoretic Analysis of

Resolution in Imaging and Array Processing, Ph.D. Dissertation,
University of California, Santa Cruz, 2005.

[27] Y. Abramovich, B. Johnson, N. Spencer, Statistical nonidentifiability
of close emitters: maximum-likelihood estimation breakdown, in:
EUSIPCO, Glasgow, Scotland, August 2009.

[28] H.L. VanTrees, Detection, Estimation and Modulation Theory, vol. 1,
Wiley, New York, 1968.

[29] Y. Meurisse, J. Delmas, Bounds for sparse planar and volume arrays,
IEEE Transactions on Signal Processing 47 (January) (2001) 464–468.

[30] Y.I. Abramovich, N.K. Spencer, A.Y. Gorokhov, Positive-definite
Toeplitz completion in DOA estimation for nonuniform linear

antenna arrays. II: partially augmentable arrays, IEEE Transactions
on Signal Processing 47 (6) (1999) 1502–1521.

dx.doi.org/10.1186/1687-6180-2011-12
dx.doi.org/10.1186/1687-6180-2011-12

	On the asymptotic resolvability of two point sources in known subspace interference using a GLRT-based framework
	Introduction
	Problem setup and assumptions
	Hypothesis test formulation of the SRL in subspace interference
	SRL in subspace interference
	Hypothesis test formulation

	Linear form of the model with subspace interference
	Definition of the SNR and the SINR

	Case 1: known SOI, known SI and known noise variance
	Binary hypothesis test
	Constrained MLE (CMLE) and GLRT
	Theoretical SINR derivation
	Alternative expression of the non-centrality parameter

	Case 2: known SOI, unknown SI, known noise variance
	Binary hypothesis test
	Joint CMLE and GLRT
	Theoretical SINR derivation
	Alternative expression of the non-centrality parameter

	Case 3: unknown SOI, unknown SI and known noise variance
	Binary hypothesis test
	Unconstrained MLE and GLRT
	Theoretical SINR derivation
	Alternative expression of the non-centrality parameter

	Case 4: unknown SOI, unknown SI and unknown noise variance
	Binary hypothesis test
	The GLRT derivation
	Theoretical SINR derivation
	Alternative expression of the non-centrality parameter

	Summary of results and discussion
	Numerical analysis
	Effect on the source prior
	Effect of the subspace interference
	Orthogonal SOI
	Analysis for nonuniform arrays

	Conclusion
	Derivation of the CMLE for cases 1 and 2
	MLEs for case 1
	MLEs for case 2

	Statistic of the random variable R2lcubwHyrcub/(sigma2/2)parwpar2
	Derivation of the CRB and the I-CRB
	Derivation of the CRB
	Derivation of the I-CRB

	Independence of parymacrpar2 and paryDiacriticalTildepar2

	References




