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The asymptotic statistical resolution limit (SRL), denoted by ¢, characterizing the
minimal separation to resolve two closely spaced far-field narrowband sources for a
large number of observations, among a total number of M > 2, impinging on a linear
array is derived. The two sources of interest (SOI) are corrupted by (1) the interference
resulting from the M—2 remaining sources and by (2) a broadband noise. Toward this
end, a hypothesis test formulation is conducted. Depending on the a priori knowledge
on the SOI, on the interfering sources and on the noise variance, the (constrained)
maximum likelihood estimators (MLEs) of the SRL subject to 6 € R and/or in the context
of the matched subspace detector theory are derived. Finally, we show that the SRL
which is the minimum separation that allows a correct resolvability for given
probabilities of false alarm and of detection can always be linked to a particular form
of the Cramér-Rao bound (CRB), called the interference CRB (I-CRB), which takes into
account the M-2 interfering sources. As a by product, we give the theoretical
expression of the minimum signal-to-interference-plus-noise ratio (SINR) required to
resolve two closely spaced sources for several typical scenarios.
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problem is to derive the minimum signal-to-noise ratio
(SNR) required to resolve two closely spaced sources.

1. Introduction

The context of narrowband far-field source localization
has been widely investigated in the literature [1]. How-
ever, the ultimate performance in terms of resolution
limit have not been fully investigated. The statistical
resolution limit (SRL) [2-12], defined as the minimal
separation between two signals in terms of parameter of
interest, is a challenging problem [13] and an essential
tool to quantify estimator performance. A closely related
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Among all the different approaches to characterize the
SRL, one can find three families. The first and oldest one is
based on the null spectrum [2,3]. A second one is based on
the estimation accuracy [5-8] and the last one and maybe
the most promising one is based on detection theory in
the context of the hypothesis test formulation. One can
find in the literature several works related to the SRL or to
the minimum SNR required to resolve two closely spaced
sources using a hypothesis test formulation [9-12,14].
Specifically, in [11], Liu and Nehorai have derived the so-
called statistical angular resolution limit (i.e., the SRL)
w.r.t. direction-of-arrival (DOA) using the asymptotic
equivalence expression (in terms of number snapshots) of
the Generalized Likelihood Ratio Test (GLRT). More recently,
Amar and Weiss [12] have proposed to determine the SRL of
two complex sinusoids with nearby frequencies using the
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Bayesian approach for a given correct decision probability.
Finally, Shahram and Milanfar [10] have considered the
resolvability of sinusoids with nearby frequencies by deriving
the theoretical expressions of the minimum SNR required to
resolve two closely spaced sources based on the GLRT.

In this paper, we focus our analysis on a GLR based
hypothesis test formulation. This choice is motivated by
the following arguments: (1) unlike the SRL based on the
mean null spectrum [2,3], the SRL based on detection
theory is claimed to be appropriate for all high-resolution
algorithms since it is not related to a specific algorithm,
(2) there exists a relationship between the SRL based on
the estimation accuracy [7] (i.e., the Cramér-Rao bound
(CRB)) and the SRL based on detection theory [11] (see
Sections 3.4, 44, 5.4 and 6.4), (3) unlike the Bayesian
approach, the use of the GLRT does not require any prior
knowledge on the parameter of interest, (4) since the
separation term is unknown to the user, it is impossible to
design an optimal detector in the Neyman-Pearson sense
[15] but the GLRT applied to our model is Uniformly Most
Powerful invariant (UMP-invariant) test among all the
invariant statistical tests [16], which is considered as the
strongest statement of optimality that one could expect to
obtain [17].

Note that all existing work in the field has been derived
for the case of only two sources of interest (SOI) neglecting
the effect of the other (interfering) sources. Another impor-
tant point is that most of the contributions have been made
in the case of spectral analysis and thus the impact of the
array geometry on the resolution has not been studied in the
context of statistical array processing with complex sources.

In this work, the considered model can be described by
two narrowband far-field closely spaced SOI, among a total
number of M >2 sources, embedded in a competitive
environment constituted by (1) the interference resulting
from the M—2 remaining sources (called here sources of
interference (SI)) and by (2) a broadband noise. For this
general model, we derive the asymptotic (in term of the
number of observations) theoretical expressions of the mini-
mum signal-to-interference-plus-noise ratio (SINR) required
to resolve two closely spaced sources for linear arrays.

The paper is organized as follows. We first begin by
introducing the observation model and the problem setup in
Section 2. Sections 3-6 are devoted to the derivation of the
minimum SNR/SINR required to resolve two closely spaced
sources and SRL derivations depending on the assumptions
on the SOI, on the SI and on the noise variance. Section 7
gives a summary of the main results and compares the
minimum SINRs required to resolve two closely spaced
sources. Furthermore, in Section 8, numerical simulations
are given to assess the effect of the array geometry, of the
aperture, of the prior sources knowledge and the effect of
the SI. Finally, Section 9 concludes this work.

2. Problem setup and assumptions

Let us consider a linear array (LA) with N sensors that
receives at the tth snapshot, a signal emitted by M
deterministic far-field and narrow-band sources, denoted
by {s1(t),...,sm(t)}. For the nth sensor and for the tth
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Fig. 1. Two closely spaced SOI imbedded in three interfering sources
observed by a linear array with N=7 sensors.

snapshot, the observation model is given by [1]

M
Ya®) = Sm(t) exXp(@mdn)+a(t),
=1

t=1,....L,n=0,...,N—1, 1)

where L stands for the number of snapshots, wp, =
—2m sin(0,,)/v is the parameter of interest of the mth
source which is a function of the bearing 0,, and of the
signal wavelength v. d, stands for the (known) distance
between a reference sensor (the first sensor herein) and
the nth sensor.! The additive noise v,(t) is assumed to be a
complex random process. Consequently, the observation
vector at the tth snapshot, can be expressed as

YO=Wo® ... yv1O =[a

where v(t) =[vo(t) ... vn_1(O]" and §(t) =[s1(¢) ... sm®)]",
in which the (n+1)th entry of the steering vector a,, is
given by [an], .1 = exp(jwnmdy), m=1,2,...,M. Finally, the
full observation vector is as follows:

Y2y’ y'@ - yar.

. ay1S(6)+v(b),

2.1. Hypothesis test formulation of the SRL in subspace
interference

2.1.1. SRL in subspace interference

The aim of this work is to derive the theoretical SINR
required to resolve two SOI and the SRL, denoted by ¢, in the
context of the scenario depicted in Fig. 1. More precisely,

1. Two closely spaced sources are of interest (SOI). With-
out loss of generality, we consider that these two
sources are s; and s, (such that s; #s,). Consequently,
the SRL (i.e., the separation) is defined as 6 £ w,—w;.

2. The M—2 remaining sources, denoted by {ss,...,Sm},

1 For instance, in the case of the uniform LA (ULA), d;, = nd where d
denotes the inter-element space between two successive sensors.
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are viewed as an interference (called here sources of
interference (SI)). The subspace interference of the SI is
assumed known (i.e., the DOAs of the SI are assumed
known). However, we will consider the case of known
and unknown signal SI {ss3, ...,Sy}.

3. The background broadband noise is assumed to be a
complex circular white Gaussian random process with
zero-mean and variance ¢2.

Consequently, the problem setup can be viewed as
deriving the theoretical SINR required to resolve two SOI
and the SRL for two closely spaced SOI imbedded in a
structured interference (the M—2 remaining sources) and
an unstructured interference (i.e., the broadband noise).

2.1.2. Hypothesis test formulation

The problem of resolving only two closely spaced SOI
in the context of a binary hypothesis test has been already
(partially) tackled? in [9-12]. But in these references, the
model is restricted to only two closely spaced SOL. In this
work, we consider a more general model described in the
previous section. This model has a rich structure since the
impact of M—2 interfering sources is taken into account.
Consequently, the theoretical SINR required to resolve
two SOI and the SRL derived in this paper are appropriate
to the realistic situation where M > 2 sources belong to
the field of view of a LA (see Fig. 1).

In the following we assume that two sources are in the
vicinity of each other. Let the hypothesis H, represents the
case where the two SOI exist but are combined into a single
signal, whereas the hypothesis #; embodies the situation
where the two SOI are resolvable. Consequently, a conve-
nient binary hypothesis test (see [9-12]) is given by

Ho : o= 0,
{H] : 5#0 (2)
Since the separation term ¢ is unknown, it is impos-
sible to design an optimal detector in the Neyman-
Pearson sense. In this case, the Generalized Likelihood
Ratio Test (GLRT) [15] is a well-known statistic test to
solve such a problem and is given by

maxs,, PY:0.p1.H1) _ pw:d.p HOY
max,, py; po.Ho)  PW; PoHo)

in which p(y; po,Ho) and p(y; 6,p;,H1) denote the probabil-
ity density functions (pdf) under Ho and 7, respectively,
and where 7/, 5 and p; denote the detection threshold, the
maximum likelihood estimate (MLE) of é under #; and the
MLE of the parameter vector p; (containing all the unknown
nuisance and/or unwanted parameters) under ;i =0, 1. If
the statistic G(y) is greater than a given threshold #’, then
the signals are said to be resolvable.

Unfortunately, closed-form expressions of 5, g; and Py
are not available (this is mainly due to the derivation of o
which is, in this case, a highly nonlinear and intractable
optimization problem [18]). However, since the two SOI

Gy = 3

2 More precisely, in this paper we consider the effect of the
interference on the SRL and we derive analytical expressions of the
minimum required SNR/SINR to resolve two closely spaced sources.

are closely spaced (this assumption can be argued by the
fact that the high resolution algorithms have asymptoti-
cally an infinite resolving power [19,9,7,10-12]), one can
approximate model (1) into a new model which is linear
w.r.t. the parameter J.

2.2. Linear form of the model with subspace interference

First, let us introduce the center parameter .=
(w1 +m7)/2. As in [9-12], using the assumption of a small
angular separation of the two SOI, a first-order Taylor
expansion around ¢ =0 leads to

yLAs, +0Bs_ +e+v, @)
where e=Cs, C=[A; ... Av], s=I[s} ... si;]" and

Sy =S81+8y, 5
S_=$2-81, )

in which s;=[si(1) ... s;(L)]". Furthermore, the signal e
encompasses the interference of all the sources apart
from the two closest ones (i.e., the first and the second
one). In addition, denoting I, the L x L identity matrix,
d=[dy d, ... dy_1]" and a the steering vector considered
for the center parameter . (ie., [a],,=exp(jocdy),
n=0,...,N-1), we define

a 0
As =l ®a, (7)
0 a | npyxi
Bé]jlug)d where @£a od, 8)
Antl®a, form=3,... .M, 9

where ® and © stand for the Kronecker and the Hada-
mard products, respectively.

In the rest of the paper, and as in [10,11], the parameter
w. is assumed to be known or previously estimated.
Furthermore, we consider that the matrix C is known or
previously estimated [20] (ie, the DOAs of the SI are
known). Note that the case of unknown . and/or unknown
C leads to an untractable solution of the GLRT and, conse-
quently, is beyond the scope of this paper.

2.3. Definition of the SNR and the SINR

A standard measure for the point source without inter-
ference is the signal-to-noise ratio defined as
2 2
A2 syl
SNR & = (10)
But a more convenient measure in case of interference
is the signal to interference plus noise ratio defined accord-
ing to

SINR 2 2om = 1/1Sm!®

Isl? 4 o2

Obviously, we have SINR < SNR. Let INR 21sl%/52 be
the interference to noise ratio. Straightforward relations

an
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between the SNR and the SINR are

SINR = LSNR if INR=o, 12)
1+o

SINR=SNR if INR=0, (13)

SINR~SNR if INR<1. (14)

In this work, the theoretical SINR and SNR are derived for
a given SRL in the scenarios listed above. More precisely,
relation (12) means that if the INR is fixed to the constant o
then the SINR is proportional to the SNR. Relation (13) is a
particular case of relation (12) and stands for the situation
where there is no subspace interference. The last relation
(14) means that the subspace interference is dominated by
the noise.

3. Case 1: known SOI, known SI and known noise
variance

First, let us consider the scenario where the two SOI,
the SI and the noise variance are known, i.e., s1, S, s and
o? are known parameters. Let §; be the SRL for the
considered case. We define the new observation vector
z2y—As, —Cs.

3.1. Binary hypothesis test

With the aforementioned framework, the hypothesis
test (2) becomes

{ Ho: z=v~CN(0,02I),

Hi: Z=wWS+V~CNWdqi,6?l), (1)

in which w£Bs_.

3.2. Constrained MLE (CMLE) and GLRT

As 61 € R, one has to find the constrained MLE (CMLE)
of §;. More precisely, the constrained optimization pro-
blem can be written according to

arg minL(z,01) subject to 1 € R,
01

where L(z,01) is the negative log-likelihood function.
According to Appendix A.1, the CMLE is

Rz

5y = 16
T (16)

where lwlI?=s"B"Bs_=lls_I?lal®. Using (16), the
statistic of the GLRT is then given by

p(z;01,H1)

G(2)=
@ p(z: Ho)

1 5 Mo
=exp (E(Hz\\z—\lz—wél nl)) 50 .

17)
Plugging (16) into (17), and defining a new statistic,
denoted by T(z), one obtains

T(2)221In Gz) = %(312”w+31w”z—3f|\w\\2)

2R(wH R (wH
- #(W”HZHW—‘R{W”Z}): Lozz} (18)
o kuz7

Using the result of Appendix B, we have

b under Ho,
T(Z)N 201 P: P d
21(21(Pga,Pg)) under Hy,
where the non-centrality parameter is given by
28 o & 2|72
21(Ppa.Po) = S Wi = S s 1212, 19)

and where y? denotes the central distribution with one
degree of freedom. Since G(2) 277'{‘(1)17’ <=T(2) 2771317 £1nn/, the
probability of false alarm and the probability of detection
are then given by Py, = ng(n) and P; = QX%(;NI(PfGVPd))(n), res-
pectively, in which Qx%(') and Qﬂal(,)favpd))(-) denote the
right tail of the y2 pdf and the y3(41(P,Py)) pdf, respec-
tively. In practice 4;(Pg,Py) can be derived for a given Py,
and P, as the solution of Q;g (Po) = Q;g( 21PppanPa)-

3.3. Theoretical SINR derivation

Result 1. The minimum SINR required to resolve two
closely spaced known SOI (w.r.t. the SRL ¢;) imbedded in
M-2 known sources in a known noise variance, is given by

sy 1% + IS 112
2lwl?
A1(Pga,Pg)

SINR; = O (20)

lIsI? +63

Result 2. The minimum SNR (w.r.t. the SRL §;) required to
resolve two closely spaced known SOI in a known noise
variance is given by

s 12+ lis, 112

SNR; = /1 (Pa,P
1= h el i

21

Result 3. If the SOI are orthogonal signals, ie., sfs; =
sifs; =0, then ls_I% = lis;II>+Iis;I>. The minimum SNR
required to resolve two closely spaced SOI is given by

2/1(Pg,Pg)

SNR;, =
T lal

(22)

The last result means that the minimum SNR required
to resolve two closely spaced SOI for orthogonal SOI is
invariant to the source powers.

3.4. Alternative expression of the non-centrality parameter

Let [6; 62]" be the vector collecting the parameters
under H;. The associated CRB(d;) which is derived in
Appendix C.1 is given by

o? 20?2
CRB(51) = - ,
0= Siwi? = s Piai?

Consequently, (19) can be rewritten w.r.t. the CRB as
21(Ppa,Pg) = 0 CRB™1(01). 23)

Note that (23) is an expression where 0 is the unknown
variable. This is in agreement with the formulation intro-
duced in Ref. [7].
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4. Case 2: known SOI, unknown SI, known noise variance
4.1. Binary hypothesis test

In the following, we consider the case where two known
SOI are imbedded in M—2 unknown interfering sources.
In addition, the noise variance is assumed to be known.
Consequently, the observations under each hypothesis are
given by
{ Ho: z2y—As, =Cs+v~CN(Cs,o2I),

Hi: z2=056,Ww+Cs+Vv~CN(,w+Cs,a2l), (24)

where §, denotes the SRL.

4.2. Joint CMLE and GLRT

As 0, € R, one has to find jointly the CMLE of the SRL
and the MLE of the interfering sources. Let us reorganize
the observation according to z=Qp+v where Q =[w (]
and p =[5, s’]", then the constrained optimization pro-
blem can be written according to

arg rr}’inL(z,p) subject to elp € R, (25)
where e; =[1 0 ... 0]" and L(z,p) is the negative log-like-

lihood function of the observation. According to Appendix
A.3, we have

+ RWwPLz)

Op=—-¢2 26
S e (26)

§HD = C*Z, (27)

§H1 = CT(Z—SW), (28)

where 1 stands for the Moore-Penrose pseudo-inverse [21].
Consequently using (26)-(28), one obtains

V4, =2—C8yy =P¢z under Mo,
] Hpl
Vi, =2—0W—CSy, =Péz—Péwm{wl7PC22} under H;.
IPiwl
(29)

Now, we are ready to use the statistic T(y) based on
the GLRT which is defined as follows:

T(2221nG@z) = %(II\?HOI\Z—M!HI 12). 30)

Plugging (29) in (30) and after some calculus, one obtains

. 2 WwhpPtzy R whz)
o= — T2
o’ IPiwl

5 ) 31
T w2
2

. =H L oH . . L e H
where Z=U z and where w =U w in which P =UU " is
any orthogonal decomposition for which U"0 =1 [22,
Eq (A.4.7)]. The statistics of the random variable z follow:
{ 2w, ~CN(0,02I) under Ho,

Zy, ~CN'(WS3,02I) under H;, 32

since U"c=o0. Expressions (31) and (32) are formally
similar to the case studied in Appendix B. So, we can

conclude that

F Yl under Ho, 3
z ~
@) 13(A2(P@,Pg)) under My, G3)
where

2
J2(P@,Pg) = %upéwuz. (34)

4.3. Theoretical SINR derivation

From (34), one can state the following results:

Result 4. The minimum SINR (w.r.t. the SRL §,) required to
resolve two closely spaced known SOI imbedded in M—2
unknown sources in a known noise variance is given by

lsq 1% + lIs, 112
22IPEWI?
22 (Pa.Pa)

SINR; = (35)

sl +6

Result 5. The minimum SNR (w.r.t. the SRL 9, ) required to
resolve two closely spaced known SOI with a known noise
variance is obtained for P¢ = I and s = 0 and thus is given by

s + Iz 112

SNR; = /3 (P, P
2=~ 0P 283wl

(36)

Result 6. If the SOI are orthogonal. The minimum SNR
required to resolve two closely spaced SOI is given by

272(Pfa,Pyg)
SNRy, = /2 fwr"d)
2T 2aR

(37

The last result means that the minimum SNR required
to resolve two closely spaced orthogonal SOI is invariant
to the source powers.

4.4. Alternative expression of the non-centrality parameter

In [23], the interference Cramér-Rao bound (I-CRB) has
been introduced. This bound is the CRB for the unknown
parameter [5, ¢2]” and for the projected observation z =
U z. So, this bound integrates the subspace interference
related to { C). More precisely, this bound takes the follow-
ing form:

- g
I-CRB(d7) = —— .
©2)= S ptwi

See Appendix C.2 for the proof. Consequently, using
(34), one deduces the relationship between the I-CRB and
the non-centrality parameter

J2(Pja,Py) = 351-CRB™1(5,). (38)
5. Case 3: unknown SOI, unknown SI and known noise
variance
5.1. Binary hypothesis test

In the following, we consider the case where two

unknown sources are imbedded in M—2 unknown sources.
The noise variance is assumed to be known. Consequently,
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the observations under each hypothesis are given by

{ Ho: y=Dg+v~CN(Dg,a?l),

Hi: y=B0+Dg+v~CN(BO+Dg,0I), (39)

where D2[A €] e CM™*M-DL i which the unknown vector
parameters 0 and g are defined by

02538_,
a|S+
g2,
where 3 is the SRL.

5.2. Unconstrained MLE and GLRT

The unconstrained MLEs of the unknown parameters
are given by [24]

0 = B"P;B) "B Py, (40)
&, =D"D)"'D"y, “n
&5, =(D"PgD)"'D"'Pgy, (42)

where Pp2I-Pp, in which Pp denotes the orthogonal
projector onto the subspace spanned by the columns of
the matrix D.

Consequently, the MLEs of the noise are

‘7%0 =Z—Dg :Pﬁy
vy, =2—B0—Dg = (I—Epp—Epp)z = Pgpy under H;,

under H,

(43)
where the oblique projectors Egp and Epg are defined as
Egp = B(B"P3;B) B P}, (44)
Epg=D(D"P;D)"'D"P;. (45)

Now, we are ready to use the statistic T'(y) based on
the GLRT and defined as follows:

T'W422InGy)= %(Hoﬁouszm 1%) (46)

, 1
Ty = 35" (P5—Pigp)y. 47

Using [16, Eq. (3.7)] and [24, Eq. (19)], one has
P$ —P[JBD] = PEEBDPi)- = PPﬁB' Thus,

, 2
TW) = —5Y"Ppay. (48)

Let Pp.g= UU" be any orthogonal decomposition [22]
of the prOJector Pp.g such that U"U =TI and define an
auxiliary random variable y = U''y. One should note that

y =U"~cN(@©,6%) under Ho, 49
y =U"BO+U"v ~ CN(U"BO,62I) under H;. “9)
Consequently,
13 under Ho,
T'(y)~ ) 50
W) { X%r(/B(Pfade)) under H1, 0

where [17] r = tr(Pp,p) = rank(Pp.p) =L and
0"B"UU"BO 202

H H
22 HB! Py, pBs_

43(Pgg,Pg) =

263
= 723 IPFwI2, (51)
Note that the non-centrality parameter )3(Pfa,Pd) can

be numerlcally computed as the solution of Q, (Pfﬂ)_
Q3 Py P-

5.3. Theoretical SINR derivation

From (51), one can state the following results:

Result 7. The minimum SINR (w.r.t. the SRL 03) required
to resolve two closely spaced unknown SOI imbedded in
M-2 unknown sources with a known noise variance is
given by

s 112+ sy 12
22IPgwi?”
323(Ppa,Pg)

SINR; = (52)

IS+

Result 8. The minimum SNR (w.r.t. the SRL J3) required to
resolve two closely spaced unknown SOI with a known
noise variance is given by

. s 1% + IS 112
SNR3 = A3(Pg,Py) —5——=—. 53
3 = A3(Pfa,Pa) 252 IPLwi (33)
A straightforward derivation leads to
IPywi? = is_II?IIbI2, (54)

where b=a—(a"a/Lya and Ib? = lal®—|a"a|’ /L.

Result 9. If the SOI are orthogonal. The minimum SNR
required to resolve two closely spaced SOI is given by

223(Pg,Py)

SNR3, —
S IE

(55)

The last result means that the minimum SNR required
to resolve two closely spaced orthogonal SOI is invariant
to the source powers.

5.4. Alternative expression of the non-centrality parameter

In the case of unknown SOI, the FIM is not invertible,
therefore the CRB of d5 does not exist. This arises due to
the lack of identifiability in model (39) because of multi-
plicative ambiguity in the product d3s_. To obtain an
invertible FIM, it is necessary to assume known SOI as in
cases 1 and 2. Note that if, as in case 3 (and also the
following case, ie., case 4), the vector of interest is
0 = d3s_, there is no ambiguity and it exists an unbiased
estimator (and thus the CRB) of 0. Keeping in mind this
fact, it is interesting to note that the I-CRB (as derived in
Appendix C.2) for the unknown parameters o3 w.r.t. the
interference subspace <D and for known SOI is given by

2

g
I-CRB(d3) = —
©3)= S Pl wiz
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This can be linked to the non-centrality parameter in (51)
according to

23(Pga,Py) = 331-CRB™1(33). (56)

6. Case 4: unknown SOI, unknown SI and unknown noise
variance

6.1. Binary hypothesis test

In the following, we consider the general case where two
unknown sources are imbedded in M—2 unknown sources.
In addition, 62 is assumed to be unknown. Let 54 be the SRL.
The observations under each hypothesis are given by

Ho: y=Dg+v~CN(Dg,cI), .
Hyi: y=B0+Dg+v~CN(BO+Dg,c2I). 67
6.2. The GLRT derivation
From (57), the GLRT is given by
) .
) 1V, Il
Cy)=-9=_To_, (58)
62 Iyl

where the MLE of the noise variance under each hypoth-
esis is given by [25]

67 = ﬁwmn% (59)
After some straightforward derivations, we obtain

Vi, =y-Dgy, =Ppy

{ V3, =y—B0y, ~Dg,,, = I—Egp—Epp)y =Pgpy under H,,

(60)

under Ho,

and where 6, g, and g, are given by (40)-(42), res-
pectively. In this case it is more convenient to define the
statistic T"(y) as follows:
@)

T' ()2 (In Gy) /M -1= 22, 61

»=(n Gy) Ny) (61)
where N(y) = (1 /az)y“P[J;m]y. In addition, using any ortho-
gonal decomposition [22], one has P[f,,,] =U'UM. Conse-
quently, N(y) = Iy12, in which y = U™"y. Thus,

" lly 112
T'(y) = H{—Z (62)
yl

and

y=UHv~CN(0,6%) under Hy,
y=UHv~CN(0,6%) under H;,

Nw)~ 3,  under Hy,
N@)~ 73,(0) under H;,

where 1’ = tr(Pjgp,) = NL—rank(Pigp)) = (N—M)L.
Furthermore, one can notice that the random variables

Iy1? and Iy1?> are independent (see Appendix D). Conse-

quently, a new statistic V(y) is described as follows:

Faran-myr under H,

V) £N-MT'() ~ { Foron-mi(7a(Pfg,Pq))  under 4, ©3

where F2L,2(N—M)L and le_vz(N,M)]_(/ﬂq(Pfa,Pd)) denote the F
central and non-central distributions [15], respectively, of
2L and 2(N—M)L degrees of freedom, in which the non-
centrality parameter is given by

205 |
2

74P, Pg) = Piwi?. (64)

Once again, note that the non-centrality parameter
/4(Pg,Py) can be computed numerically as the solution of
QEzlL,z‘MM,L (Pfa) = QEzlL,zw—M»L(lq(Pfavl’d))(Pd) with 2L and 2(N-M)L
degree of freedom, where Oz, (B)and Q¢ .puriB)
denote the right tail of the pdf Fy;on_myr and Faron—my
(A4(Pg,Py)), respectively, starting at f.

6.3. Theoretical SINR derivation

From (64), one can state the following results:

Result 10. The minimum SINR (w.r.t. the SRL J,4) required
to resolve two closely spaced unknown SOI imbedded in
M-2 unknown sources with an unknown noise variance
is given by

sy 1% + IS, 112
22IPpwi?
47.4(Pg,Pg)

SINR, = (65)

sl +6

Result 11. The minimum SNR required (w.r.t. the SRL d4)
required to resolve two closely spaced unknown SOI with
an unknown noise variance is given by

sy 1% + lIs, 112

SNR; = A4(P,Pg) 1 t1S20
1=l b0 b2

(66)

As in case 3, the minimum SNR required to resolve two
closely spaced orthogonal SOI is given by the following
result:

Result 12. If the SOI are orthogonal. The minimum SNR

required to resolve two closely spaced SOI is given by

_ 2/4(Pp,Po)
Sibiz

The last result means that the minimum SNR required

to resolve two closely spaced orthogonal SOI is invariant
to the source powers.

SNR4, (67)

6.4. Alternative expression of the non-centrality parameter

As in case 3, the I-CRB defined in Appendix C.2 for the
unknown parameter [04 62]" w.r.t. the interference sub-
space (D) with known SOI can be linked to the non-
centrality parameter, given in (64), according to

J4(Pga,Py) = 331-CRB™(34). (68)
7. Summary of results and discussion

The studied cases are summarized in Table 1.2

3 In this section, Pfy,Py are dropped from A(Pg,Py) for the sake of
simplicity.
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Table 1
Summary of results with w=Bs_ and D=[A C].
SOI SI Noise variance  The distribution SINR for M > 2 SNR for M=2
used to compute A
Case 1  Known Known Known 13 lIs111% + llsy 12 1112+ lIsy 112
2 2
lisii2 +%5$ku2 2571wl
1
Case 2 Known Unknown  Known e s 112 + lisy 12 Isq 12 +lsy 112
2 2
lsli2 +%(5§\\Pgwn2 25w
2
Case 3  Unknown Unknown Known PN s 1% +lIs5 112 1112+ llsy 12
352 2
lsli2 +%{3§HP,§WHZ 2051Pzw!
3
Case4  Unknown  Unknown  Unknown Faran-myL sy 112 + lisy 12 sy 12 + Iy 112
I} 2
1812 +-2 521 Pywi? 26, IPzWIl
A4
90 Case 4
& ‘¥ Case 3
80 | x- Case 2
O Case 1
70 | ’v 1
= -
m N ¢ J
g B, 60 X v
= £ E LA ..
< § 50 @ b e S
NN
= I .
8., M.,
- x -
el o} x o) X
Oy x
20 | O @iy ]
0 10 20 30 40 50 60 10
Degree of freedom 0 0.02 0.04 0.06 0.08 0.1
Fig. 2. Behavior of the non-central parameter of 2 versus n the degree SRL [rd/m]

of freedom for different values of Py and for a fixed Py, =0.01.

Toward the comparison of the studied cases, we for-
mulate the three following propositions:

P1. First, as shown in Fig. 2, an increasing the number of
the unknown parameter increases the degree of free-
dom of the j2 distribution used to derive 2, which will
increase the value of A and consequently,

=A< 23. (69)

P2. Second, considering the noise variance as unknown
parameter will produce a F distribution to compute
the desired non-centrality parameter (see case 4). As
a consequence, the non-centrality parameter com-
puted w.r.t. y2 distribution is lower than the non-
centrality parameter computed w.r.t. F distribution for
any Py > Py, [26], meaning that

A3 < Jg. (70)

P3. On the other hand, note that {C» c (D), where {C)
and <D denote the subspace spanned by the column
of the matrices C and D, respectively. Consequently
we have vw: wHP-w < wfPpw and thus

IPywI? < IPfwi? < w2, (71)

Fig. 3. SINR, required to resolve two SOI w.r.t. the SRL for the studied

cases.

From P1, P2 and P3 and for the same SRL (ie,

01 =0, =03 = 04), one deduces that
SINR; < SINR; < SINR3 < SINR4.

The same analysis can be done in the case of M=2 (no

interference), i.e.,
SNR; < SNR; < SNR3 < SNRy,

SNR;, < SNR3, < SNR3, < SNRyo.

In Fig. 3, we have reported the minimum SINR required to
resolve two closely spaced SOI w.r.t. the SRL obtained in all
cases. The gap between cases 1 and 2 is evaluated around
10dB and it is especially due to the projector Pg. The
difference between cases 2 and 3 is around 25 dB. This loss
is considerably high because it is due to the projector Py, but
also to the higher degree of freedom for 1. Finally, the gap
between cases 3 and 4 is about only 0.5 dB and it is produced
by the difference in the distribution used to compute the
desired /4. In conclusion, the difference between the studied

cases is mainly due to

e the non-centrality parameter numerical value,

o the effect of the subspace interference according to the

projection onto <C» or {D>.
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Fig. 4. (left) SINR to resolve two known/unknown closely far-field SOI with known noise variance for an ULA where N=10, d =v/2 and M=4 in which
Aq =0.75. (right) The minimum SINR required to resolve two closely spaced SOI for an ULA where N=10, d = v/2, for different number of sources and 4,.

8. Numerical analysis

This section is devoted to the numerical analysis of the
minimum SINR required to resolve two closely spaced SOI
w.r.t. the SRL. Furthermore, we have considered equal inter-
ference’s power and broadband noise’s power (INR = 1) and
thus SINR = 1SNR. The number of snapshots is equal to L=
100 where v = 0.5 m and (Pg,P4) = (0.01,0.99). The SRL w.r.L.
the two closest sources (the SOI) is denoted by J, where all
the remain sources are equally spaced by 4., (where 4, > 9).

8.1. Effect on the source prior

The prior knowledge on the source amplitudes and
source phases is known to have a considerable effect on
the estimation accuracy [27]. One could expect the same
behavior concerning the resolution limit. From Fig. 4(left)
one can notice the effect of the sources prior knowledge
on the SRL. Indeed, the SRL depends strongly on the prior
sources knowledge, e.g., the minimum SINR required to
resolve two closely spaced known SOI w.r.t. § is approx-
imatively 40 dB less than the minimum SINR required to
resolve two closely spaced unknown SOI.

8.2. Effect of the subspace interference

In Fig. 4(right), we have reported the effect of additional
sources (considered as a subspace interference) on the
minimum SINR required to resolve two closely spaced SOL
One can distinguish two cases:

1. The first one represents the scenario where 4, > 4. In
this case, one can notice that the additional sources do
not affect the SINR. This can be explained by the fact
that the high resolution algorithms have asymptoti-
cally an infinite resolving power [19].

2. The second scenario is for 4., > ¢. In this case, one can
notice the drastic effect of the interfering sources. For
example, the SINR gap between M=4 and M=6 scenar-
ios is evaluated around 30 dB.

8.3. Orthogonal SOI

From an estimation point of view, it is well-known that
the estimation accuracy for orthogonal signal sources

75
3 SINR for orthogonal sources
I:I @ SINR for non-orthogonal sources
70 F B
e a.,
g T 1
E a.,
g g
60 -
7 @,
s -
55 Q.. - P
50 : t : : t : t
001 002 003 004 005 0.06 007 0.08

SRL [rd/m]

Fig. 5. The required SINR to resolve two BPSK unknown orthogonal/non-
orthogonal closely far-field sources for an ULA where N=10, d =v/2 and
M=4.

outperforms the estimation accuracy for the non-orthogonal
signal sources [28]. One expect the same behavior concern-
ing the minimum SINR required to resolve two closely
spaced SOL In fact, as shown in Fig. 5, the minimum SINR
required to resolve two closely spaced SOI in the case of
non-orthogonal binary phase-shift keying (BPSK) signal
sources is greater than the case of orthogonal BPSK signal
sources. This loss is around 3 dB.

8.4. Analysis for nonuniform arrays

The effect of the nonuniform antenna array is studied
in the following. The linear array will be specified by their
array aperture and their sensor positions.*

o First, let us study the effect of the number of sensors
on the SRL (or, equivalently, on the minimum SINR
required to resolve two closely spaced sources). In
Table 2 are listed different array geometries with five,
six, seven and nine sensors. The array with nine sensors
is an ULA, whereas the others belong to the so-called

4 For example, an ULA of N sensors will be represented as
Ann-1=[0,1,..., N-1], where the subscript N—1 is related to the array
aperture (i.e., the distance between the first and the last sensor is equal
to (N—1)d where d =v/2 [29].)
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Table 2
Characteristic of different array geometries with different number of sensors and with the same array aperture.
Array type Sensor positions N Aperture Redundant lags Missing gaps
Minimum redundancy Asg [0,1,2,5,8] 5 8d R={1,3}
Minimum redundancy Agg [0,1,2,3,6,8] 6 8d R=1{1,2,3,5,6} G=
Minimum redundancy A;g [0,1,2,4,5,6,8] 7 8d R={1,2,3,4,5,6} G=
ULA Agg [0,1,2,3,4,5,6,7,8] 9 8d R=1{1,2,3,4,5.6,7} G
74
o -0-SINR for A, . 4-SINR for A, ,
\, G Y O SINR for A,
82 co. o :::: :°r ::.a 72 R, - SINR for A:'Z
Ny - £ for 8 -
80 P 8 ‘ e 4-SINR for A, , 70

78
76

SINRmin [dB]

74 |
R | PR S - 5

0.02 0.03 0.04 0.05 0.06

SRL [rd/m)

SINRmin [dB]
@
&

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
SRL lrd/m)

Fig. 6. (left) The required SINR to resolve two unknown closely spaced sources with known noise variance for different array geometries and same
aperture which N=10, d=v/2 and M=4 in which 4, =1.5. (right) The required SNR to resolve two known sources using ULA, Type 4 and Type 5

geometries where Py, =0.01 and P;=0.99.

Table 3

Characteristic of different array geometries with the same number of
sensors and different array aperture. The so-called perfect array contains
no redundancy lag and no gap.

Array type Sensor N Aperture Redundant Missing
positions lags gaps
Perfect array A4 [0,1,4,6] 4 6d R={} G={}
Ass [0,1,2,6] 4 6d R={1) G=1{3}
Minimum [0,1,2,5] 4 5d R={1} G={}

redundancy Ags

“optimal” nonuniform array geometries [30]. More
precisely, an exhaustive search has been done to select
the minimum redundancy arrays with five, six and
seven sensors with an aperture equals to 8d (recall that
the minimum redundancy arrays minimize the number
of redundant lags R such that no missing lags will be
present). From Fig. 6(left) one can notice, for the same
array aperture, that the minimum SINR required to
resolve two closely spaced SOI is slightly sensitive to
the number of sensors. The gap for ULA of five sensors
and the one for nine sensors (having the same array
aperture) is evaluated at 2 dB.

Finally, let us consider the case of different LA geometries
with the same number of sensors. In Table 3 are reported
different array geometries for N=4 sensors with different
apertures. One can notice, from Fig. 6(right), that the array
aperture affects the minimum SINR required to resolve
two closely spaced SOI is around 2 dB. On the other hand,
one can notice that the SRL for arrays of the same
aperture with different array geometries are affected by
only 1dB (ie., between the so-called perfect array As¢
and any array A}, 5). Meaning that, the SRL is only slightly
sensitive to the array design (for the same array aperture).

9. Conclusion

In this paper, we have linked theoretical expressions of
the minimum signal-to-interference-plus-noise ratio (SINR)
required to resolve two closely spaced far-field narrowband
sources among a total number of M > 2 impinging on a
linear nonuniform array, and the statistical-resolution-limit
(SRL). The two sources of interest (SOI) are corrupted by (1)
the interference resulting from the M—2 remaining sources
and by (2) a broadband noise. Since our approach is based on
the detection theory, these expressions provide useful infor-
mation concerning the resolution limit for a given couple of
probability of false alarm and probability of detection. In
addition, the theoretical SINR required to resolve two SOI
and the SRL have been analyzed with respect to the inter-
ference (resulting from the M—2 other sources), the array
geometry and the aperture, the prior sources knowledge or
their orthogonality.

Appendix A
A.1. Derivation of the CMLE for cases 1 and 2

A.1.1. MLEs for case 1
The negative log-likelihood function is given by

L(z,0) = —In p(z) = —In(ne?) ™M/ + 62 llz—wd 2.
The optimization problem is given by
arg mSinL(z,(S) subject to 0 € R.

This problem can be solved by the Lagrange multiplier
method. Let 3 be a real Lagrange multiplier, then the
Lagrange function is given by

£(5,9) = L(z,5) + 33(5).
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The condition 3(0)=0 can be rewritten according to
—j%(é—é*) =0. So, the partial derivatives of the Lagrange
function are

oL 2 25%  H _'B
5= (Ilwl= 6™ —z"w) I
oL ..
6.9:‘@)'

since 85* /88 = 0. By letting 6£/65\50 =0, we have
whz | 902
w2 21w
Setting 0L£/09/, =0, we have
whz }_ 90
Iwi?f 2wz~

o (72)

I(Jo) = 3{
Consequently, the Lagrange multiplier is given by

2 .
9o = ﬁ\s{w"’z}.

Plugging the above expression in (72), we have

whz {w”z}_‘R{sz}

5= —Jj3
lwli? lwll? lwll?

(73)

by using R{a} = a—j3{a}.

A.1.2. MLEs for case 2
The negative log-likelihood function is given by

L(z,d) = —In p(z) = —In(na?) M2 4 6-21z—QpII>.
The optimization problem is given by

arg mpinL(z.p) subject to elp € R,

where e; =[10 ... 0.

This problem can be solved by the Lagrange multiplier
method. Let 3 be a real Lagrange multiplier, then the
Lagrange function is given by

L(p,9) =L(z,p)+ 93l p).

The condition J(e{p) = 0 can be rewritten according to
—jlelp—elp*)=0. So, the partial derivatives of the
Lagrange function are

%__2 T**_T*_‘g
o =0 @ UP-Q) e,
oL

@—\‘(911’),

since op*/op = 0. By letting 6£/ap\p0 =0, we have

+ . 90'2 H 1
Po=Q Z—JT(Q Q) e (74)
By setting 6L/03 g, =0, we have
i 02
3(elpy) = 3elQ'z)— 02 h=0,

where we have defined the real quantity h = e{(QHQ)”el.
Consequently, the Lagrange multiplier is given by

2
9o = m;s(e{Q*z).

Plugging the above expression into (74), we have
. 1 1~ +
p=Q'z-j; (Q"Q) 'er3(€Q"2). (75)

CMLE of the SRL: The estimate of the SRL is given by
5 =elp and thus,

5 =elQ'z—j3(e]Q'2). (76)
Now, remark that R{a} = a—j3{a}, then
5 =9%(elQ'z). (77)

In addition, using the inverse of a block matrix and the
Schur complement [10], we have

elQ’ = cwt 1 ufct, (78)
where
1 1
= = , 79
Iwl2—wHc iy 'cliw — IPEwl? 79)
H H -1
u = % (80)
IPFwl
Thus
wHp{
eT T — C . 81
e IPEwI? @b

Using (77) and (81), we have (26).

MLE of the interfering sources: The estimate of the inter-
fering sources is given by § = Jp where J = [0q_2)1x1 Iv—-2)L]
is an (M—2)L) x (M—2)L+1) selection matrix. We have

R o1 1~
$=JQ'z-j JQ"Q)'ei31e1Q"z). (82)

Let us define the following matrix:

clwwict”

cacoy " (I1+—F—— 83

o < IPcwl? ®
and observe the following equalities:

f=uwt 6c! =CT- C'ww'P¢, 84
e IPEwI? ¢ ¢4
1, un 1, 1 1 "
pHJQQ) e = puGle=pu=-Cw. (85)

Plugging the two above expressions and (81) into (82),
we obtain

1 HpL Hp-L
§=C'z- %zﬂ@wii WLPCZZ (86)
IPEWI IPSwll
Hp-L HpL
§=C'z—C'w wchzz —j3 WLPCZZ (87)
IPEWI IPEWI
5
§ =Clz—w)d). (88)

A.2. Statistic of the random variable R?{w'ly} /(a2 /2)Iw?

Let us consider a random variable y = 6w +v corrupted
by a zero-mean white circular Gaussian noise v of
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variance ¢2. We recall that a circular random variable
means [22] R{v} ~N(0,(62/2)I), I{v} ~N(0,(c2/2)I) and
ER{v}3{v}T) = ES(vin{v}T) = 0. So,
{ Y, ~ CN(0,62D),

Yy, ~ CN(6w,0%D). (89)

Let u=R{w'y}. The mean of variable u is given by
Iwli?$ and its variance is

Cu=E{(R wHy}—lelzé)z}— E{R*(wlv}}

= E{(RWT)R{v}—Iw}3(v))?)

= E((R(W) R{v} + 3w S(v))?).

Consequently, using the circularity of the noise, one
obtains

= R{OER IR R{0} + o} ESWSv) e} (90)
N——— _,_/

(a2/2) (02/2)I

+R{OER WIS S0} + o EGVIRvHR{e},  (91)
—_—— —_———

0 [}

2
Cu= % Iwi2. (92)

Let us define a new statistic as follows:

T2 L X W) ©3)
G
2
Thus, according to [15], we have T(y) ~ x3(4) in which
%3(%) denotes the non-central chi-square distribution with
one degree of freedom where the non-centrality para-
meter is given by

Ew?  258°Iwl?
[

22 (94)

A.3. Derivation of the CRB and the I-CRB

In this appendix, we derive the CRB (Cramér-Rao
Bound) and the so-called I-CRB (interference CRB) [23].

Let E{(é—@)((:)—G)T} be the covariance matrix of an

unbiased estimator, ®, of the deterministic parameter

vector ©. The covariance inequality principle states that,
under quite general/weak conditions, the variance satis-

fies: MSE([@)],)— ([@], (0])%} > [CRB(®)];;

CRB(®)=FIM '(®), in which FIM denotes the Fisher
Information Matrix. The (ith,kth) element of the FIM for

the parameter vector ® can be written (for a complex
circular Gaussian observation model) as [22]

[FIM(©)];, = tr{R-l R g1 R }

where

A0 A0,
12% { oM g a—,"}. (95)
[@], O,

where R and u denote the covariance matrix and the
mean of the observation vector model, respectively.

A.3.1. Derivation of the CRB
Let us consider the estimation of the real parameter of
interest §, where the observation model is as follows:

Z=0wW+v, (96)

where v ~CN(0,6%I) whereas §, w and o2 are determi-
nistic parameters. Thus z~CN(u=Jw,R=0?I). The
unknown deterministic parameter vector is defined as

=[6 02]". Using (95), the CRB w.r.t. § for the observation
(96) is given by

1
2
CRB(J) = [2 *R{ <Zg> ZgH = %nwn2 (97)

since it is well-known that § and o2 are decoupled
(diagonal FIM).

A.3.2. Derivation of the I-CRB

Now, let us consider the estimation of the real para-
meter of interest J, where the observation model is
corrupted by a deterministic structured interference as
follows:

Z=0w+Cs+v. (98)
Let us define the orthogonal projector and its ortho-

gonal decomposition according to P¢ =UU" which is a

null-steering operator that nulls everything in the inter-

ference space (C) [24]. Let us define a new observation

based on (98) as follows:

:20"2=50"w+v, (99)

since U0"0 = I one has v=U V~CN(O ¢o2l) and
zZ~CN(u= su” w,R = ¢2I). The I-CRB [23] is the CRB for
the observation (99) related to the projector Pg where the
unknown vector parameter is given by ©. Consequently,
using (95) and after straightforward calculus, one obtains

-1
I-CRB(3) = {2 m{ <ag> gg” - ?\\Péw\\z (100)

since it is well-known that § and o2 are decoupled
(diagonal FIM).

A4. Independence of IlylI> and Iy

Since E(y) =0 under H, and #4, one has
Cov(y.y) =Eyy") = U™EQy")U
=UH"U'U"Eyy")UU"U = UM Py, E(ry" )PpigU
=U"(0°Pigp\Pps 5+ (Pigp,€)(Ppy &MU,
where e = B0+ Dg under +; and e =Dg under H,.
Note Pjgp e =0. And, on the other hand,
P[JBD]PPl*,B = Py (PyEpp—EgppPpEpp)Pp
= (PpEpp—PpEppPpEpn)Pp
= (P5Epp—PpEgp)Pj = 0.

Consequently, Cov(y,y) =0. Meaning that y and y are
uncorrelated. Thus, they are independent in the normal
distribution case [25]. Consequently, it is straightforward
to conclude that IyI? and Iy11? are also independent [16].
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