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Abstract—This correspondence investigates lower bounds on estimator’s
mean square error applied to the passive near field source localization.
More precisely, we focus on the so-called threshold prediction for which
these bounds are known to be useful. We give closed form expressions of
theMcAulay-Seidman, theHammersley-Chapman-Robbins, theMcAulay-
Hofstetter bounds and also, a recently proposed bound, the so-called To-
dros-Tabrikian bound, for the deterministic observation model (i.e., pa-
rameterized mean) and the stochastic observation model (i.e., parameter-
ized covariance matrix). Finally, numerical simulations are given to assess
the efficiency of these lower bounds to approximate the estimator’s mean
square error and to predict the threshold effect.

Index Terms—Deterministic lower bounds, mean square error, near field
source localization, performance analysis, threshold prediction.

I. INTRODUCTION

Source localization is an important and challenging topic with sev-
eral applications such as sonar, seismology, digital communications,
etc. Particularly, the context of far field sources has been widely inves-
tigated in the literature and a plethora of algorithms to estimate local-
ization parameters have been proposed [1]. In this case, the sources are
assumed to be far from the array of sensors. Consequently, the prop-
agating waves are assumed to have planar wavefront. However, when
the sources are located in the so-called near field region, the curvature
of the waves impinging on the sensors can no longer be approximated.
Therefore, in this scenario, each source is characterized by its bearing
and its range (distance between the source and a reference sensor). One
can note the existence of some estimation algorithms adapted to the
passive near field source localization [2]–[6].
Nevertheless, there exist only few works studying the asymptotic

estimation performance in this context [4], [7] (by asymptotic we
mean a large signal to noise ratio or a large number of snapshots [8],
[9]). More precisely, to characterize the asymptotic performance of an
estimator in terms of the mean square error, the Cramér-Rao bound,
which is a tight bound under certain mild/general conditions [10], is
the most popular tool [11]. However, the Cramér-Rao bound becomes
too optimistic in the non-asymptotic region (i.e., when the outlier
effect appears [12], [13].) This non-asymptotic region is delimited by
the so-called threshold or breakdown point (i.e., when the estimator’s
mean square error increases dramatically.) One should note that the
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prediction of this threshold is of great importance since it delimits the
optimal operating zone of the estimators.
To fill this lack, some other minimal bounds tighter than the

Cramér-Rao bound has been proposed. In [14]–[17] the authors pro-
vide a different unification of some well known lower bounds on the
mean square error of unbiased estimators of deterministic parameters.
More precisely, in [16], Forster and Larzabal, solved the problem of
establishing lower bounds on the mean square error for one determin-
istic parameter estimation using a constrained optimization problem.
By imposing some adequate constraints on the bias for the considered
optimization problem, they have rediscovered several lower bounds
as the Cramér-Rao, the Barankin and the Bhattacharyya bounds. The
extension to several unknown deterministic parameters can be found in
[17]. In [14], Todros and Tabrikian propose a new class of performance
lower bounds using the so-called integral transform which generalizes
the derivative applied on the likelihood-ratio function. Thus, they
showed that some well known lower bounds (as the Cramér-Rao,
the McAulay-Seidman and the Bhattacharyya bounds) are obtained
by a proper choice of the kernel of the integral transform of the
likelihood-ratio function. It can be noted that the limiting expression
(w.r.t. test points) of some of these lower bounds leads to the Barankin
bound [18]. This bound is considered as the greatest lower bound on
the mean square error of any unbiased estimator [17]. Unfortunately,
the Barankin bound is the solution of an integral equation with a
incomputable analytic solution.
To the best of our knowledge, no results can be found in the literature

concerning the threshold prediction in the context of near field source
localization1. In this correspondence, we fill this lack. We consider the
two classical source signal model assumptions [9]: the deterministic
model (i.e., when the signals are assumed to be deterministic) and the
stochastic model (i.e., when the signals are assumed to be driven by
a Gaussian random process). Furthermore, in both cases, the observa-
tion model is corrupted by a spatially colored noise. For each model,
we propose to characterize the threshold region using some determin-
istic lower bounds on the estimator’s mean square error (i.e., lower
bounds w.r.t. unknown deterministic parameters of interest). In partic-
ular, we derive and analyze the following deterministic lower bounds:
the McAulay-Seidman [20], the Hammersley-Chapman-Robbins [21],
[22], the McAulay-Hofstetter [23] bounds and also, a new proposed
bound, the so-called Todros-Tabrikian bound [14].
This correspondence is organized as follows. Section II formulates

the problem and basic assumptions. In Section III we present the
derivation of the lower bounds under the deterministic and stochastic
assumption. Section IV is devoted to numerical analysis. Finally,
conclusions are given in Section V

II. MODEL SETUP

In the near field context, the waves impinging on the sensors are
considered to be spherical. Consequently, the time delay associated
with the signal propagation time from a referential sensor (let say the
first one) to the ( )th sensor is given by (see [4, Fig. 1] for the
adequate labelling):

(1)

1Note that in [19] the authors analyzed only the stochastic signal model while
both deterministic and stochastic signals models are analyzed in this paper.
Moreover, the authors in [19] studied localization performance with dis-
tributed array of sensors. While, as mentioned by the authors, the source is
near-field with respect to the overall ”array of arrays”. However, the far-field ap-
proximation was considered with respect to each array. Our model corresponds
to and, in this case (only one array), the source cannot be considered in
the far-field and in the near-field.
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where is the signal wavelength and where and de-
note the range (i.e., the distance between the source and the referen-
tial sensor) and the bearing of the source, respectively. More precisely,
when the source is located in the so-called Fresnel region [3], i.e., if

(2)

in which denotes the number of sensors. Then, the time delay (1)
is given by: , where denotes the

terms smaller or equal to , in which the so-called electrical angles
are given by:

(3)

and

(4)

Neglecting , the time delay can be approximated by the
following quadratic form

(5)

Consequently, considering a uniform and linear array (ULA) com-
posed of sensors with an inter-element spacing , receiving a single
near-field and narrowband source, the observationmodel is, then, given
as follows [2]:

(6)

where denotes the transpose sign and is the number of snapshots,
whereas, and is the observed signal at
the output of the ( )th sensor. The source signal is denoted by .
The random process is an additive noise. The ( )th element
of the steering vector is given by .
In the remain of this paper, we will use the following assumptions:
• The noise will be assumed to be a complex circular Gaussian
process with zero mean with a known covariance (full rank) ma-
trix .

• For both deterministic [8] and stochastic [24] models, the un-
known vector parameter is given by .

In the following , and represent the real value of the
candidate parameters , and , respectively. The joint probability
density function of the observations

for a given , is expressed as:

(7)

in which denotes the determinate operator. Depending on the con-
sidered signal model we will specify, in the following, the structure of

and .

III. DETERMINISTIC LOWER BOUNDS DERIVATION

A. Background : Deterministic Lower Bounds Unification

The unification presented in [14] states that the mean square error
(MSE) of any unbiased estimator can be lower bounded as follows:

(8)

where is the estimate of the true value parameter , is the
expectation w.r.t. , is a lower bound matrix, means
that the matrix is non-negative defined. Consequently, it has
been shown that for a specific choice of the couple , one obtains
a specific lower bound. In this way, the Cramér-Rao bound (CRB) can
be defined using the following couple:

(9)

in which denotes the natural logarithm where is the 1 vector
filled by ones. For the following couple:

(10)

one obtains the McAulay-Seidman bound (MSB), in which the
so-called ratio-likelihood function is given by:

(11)

and where for denotes the test points, whereas
. The Hammersley-Chapman-Robbins bound

(HCRB) can be defined using

(12)

where denotes the 1 vector filled by zeros. Finally, one can define
the McAulay-Hofstetter bound (MHB) using:

(13)

where denotes the 2 2 identity matrix.
Recently, a new deterministic Cramér-Rao Fourier bound, called the

Todros-Tabrikian Bound (TTB), was proposed in [14]. To have a gain
in computing time, this latter applies the discrete Fourier transform
(DFT) on and . Consequently, it is given thanks to the fol-
lowing couple:

(14)

where, in the near field context, the bi-dimensional discrete Fourier
transform matrix is given by

(15)

in which is expressed for the th frequency test bin
as

(16)

where , and in which
and are the numbers of test points w.r.t. and , respectively.
and denote the uniform inter-test points w.r.t. and , respec-

tively. Consequently, the index is a unique combination of
where the total number of these combinations is denoted by .
One should note that the aforementioned bounds depend generally

on the number of test points and/or the number of frequency test-bins
. Thus, in the following these bounds are indexed by and/or .

Next, we give matrix expressions of , then, , and
will be deduced.
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B. Deterministic Lower Bounds Matrix Expressions

After some straightforward calculation it can be shown (see [14, Ap-
pendix M]) that the TTB is expressed as

(17)

where

(18)

in which

(19)

and

(20)

where the KLD denotes the Kullback-Leibler divergence and

(21)

Following the same methodology, one can easily obtain the fol-
lowing matrix expressions:

(22)

(23)

(24)

In the following we give closed-form expressions of the elements
of , , and . We focus only on and ,
since the expression of is well known, where for complex cir-
cular Gaussian observations (i.e., if ) one has

[25], where

(25)

in which and denote the trace operator and the real part,
respectively.
1) The Deterministic Case: In the deterministic case we assume that

is the source signal with a carrier frequency
equal to where and are the known real amplitude and the
known shift phase, respectively. Consequently, one has an observation

model with a parameterized mean such that
where . Then, by ap-
plying (25) one has

(26)

Furthermore, one obtains:

(27)

The term and (20)–(21) lead to: (see the
equation at the bottom of the page), in which

(28)

Finally, , , and are given by plugging
(26), (27) and (28) into (24), (23), (22) and (17), respectively. See
Appendix A for non-matrix expressions of (i.e., in the case
where .)
2) The Stochastic Case: Let us consider the stochastic model, i.e.,

when the signals are assumed to be Gaussian (with zero mean and vari-
ance ) independent of the noise. Under this assumption, one ob-
tains an observation model with a parameterized covariance matrix
such that where the covariance matrix

in which denotes the Kro-
necker product. Consequently, the FIM in (25) becomes:

(29)
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First, note that:

(30)

Observing that:

(31)

and, in the same way,

(32)

Thus, plugging (31) and (32) into (30) one obtains

(33)

Secondly, one has:

(34)

Consequently, using the fact that
[26] and plugging (29), (33) and (34) into (24), (23), (22) and (17)
one obtains , , and , respectively. See
Appendix A for non-matrix expressions of (i.e., in the case

.)

IV. NUMERICAL SIMULATIONS

The scenario used in these simulations is a ULA of sensors
spaced by . The noise is assumed to be a complex circular white
Gaussian random process with zero-mean and known variance , un-
correlated both temporally and spatially.
To compare the threshold prediction accuracy we plot theMSEw.r.t.
and using 1000 Monte Carlo trials. In both deterministic and sto-

chastic cases (see Figs. 1–4), we compute , ,
using test points (more precisely, we used test points
over the parameter and test points over the parameter .)
The TTB, , is obtained using test points and also by
numerical maximization over frequency test bins for .

Fig. 1. Lower bounds on the mean square error (deterministic case) w.r.t. for
near field source localization, with and .

Fig. 2. Lower bounds on the mean square error (deterministic case) w.r.t. for
near field source localization, with and .

Fig. 3. Lower bounds on the mean square error (the stochastic case) w.r.t.
for near field source localization, with and .

A. Threshold Prediction

Figs. 1–4 provide an illustration of the usefulness of the aforemen-
tioned deterministic lower bounds in the case of deterministic and sto-
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Fig. 4. Lower bounds on the mean square error (the stochastic case) w.r.t.
for near field source localization, with and .

chastic model assumptions for and . First, one can notice that the
MSE of is lower than the MSE of which is expected due the range
of those parameters and from the fact that is the coefficient of the
second order, whereas, is the coefficient of the first order w.r.t. the
time delay (see (5)). Second, one can notice that all the aforementioned
bounds provide a good prediction of the MSE threshold.
In Figs. 1–4, we considered only one frequency test bin. In this case

we notice that the MHB is more accurate than the TTB. This degra-
dation is due to the fact that the TTB is based on lossy compression
of the samples of the likelihood ratio function into frequency
test-bin (i.e., it considers only one constraints for ), whereas the
MHB does not apply this lossy compression and use all the information
contained in the samples in the parameter space (i.e., constraints).
Nevertheless, one can note that the advantage of the TTB is its com-
putational cost (the computational complexity of the TTB is lower in
comparison to the MSB, HCRB and MHB due to the inversion matrix,
see (24), (23), (22) and (17).) Consequently, we can consider the maxi-
mization of the TTB over more than one frequency test bins. As shown
in the following, this leads to a considerable improvement of the TTB.

B. Effect of the Number of Frequency Test-Bins on the TTB

Considering the maximization over more than only one frequency
test bins is essential to ascertain the proper use of the TTB. For
one can maximize the TTB via different numerical optimization
methods. One of the commonly used approach is to consider a few
fast one-dimensional search procedures. More precisely we use a
numerical maximization approach under which the frequency test-bins

are selected in a sequential manner. In the first step,
maximization is performed w.r.t. one test-bin . In the -th step
( ) maximization is performed w.r.t. while
are fixed. This sequential procedure is being continued until .
As shown in Fig. 5, one can notice that this maximization, with re-

spect to the frequency test-bins, leads to a considerable improvement of
the threshold prediction (the threshold prediction is now only 2 dB far
from the true value, instead of 8–10 dB without maximization). On the
other hand, the TTB out performs the MHB (and consequently also the
MSB and the HCRB) with a maximization of only frequency
test-bins, or more, as illustrated in Fig. 5.

C. Effect of the Number of Sensors on the Threshold

Fig. 6 shows us that the number of sensors has an important effect
on the asymptotic variance of the MLE but also on the presence of
outliers (which is deduced by the SNR value of the breakdown point).
In this example, a decreasing of 5 sensors increases the SNR value of

Fig. 5. Threshold prediction w.r.t. using a sequential maximization of the
TTB with respect to the frequency test-bins with .

Fig. 6. Deterministic lower bounds on the mean square error w.r.t. for near
field source localization, with different number of sensors.

the breakdown point by approximately 2 dB (i.e., outliers will appear
2 dB earlier if we remove 5 sensors)

D. Effect of the Number of Snapshots on the Threshold

Finally, one should note that increasing the number of snapshots has
a similar effect to decrease the noise variance or to increase the SNR
as shown in Fig. 7. This can be also explained for the particular case
of fixed and constant amplitude, i.e., , , .
In this case, a sufficient statistic is to sum all the observations w.r.t.
the snapshots. Since the amplitude is constant, thus, one obtains the
following sufficient statistic , which
is equivalent to reduce the variance by a coefficient equal to the number
of snapshots.

V. CONCLUSION

In this paper, we present the derivation of different deterministic
lower bounds on the MSE in a near field source localization context.
This analysis allowed us to characterize the non-asymptotic perfor-
mance estimators mean square error. In particular, we focused on the
threshold/breakdown prediction. Furthermore, this study shows that the
recently proposed TTB out performs its predecessors as the MHB by
using only a few one-dimensional sequential maximization over fre-
quency test-bins.
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Fig. 7. MHB lower bound on themean square error w.r.t. for near field source
localization.

APPENDIX A

In this appendix, we give non-matrix expression of the TTB for
the case . In this case, the matrix will be reduced to a row
vector of dimension , such that ,

. Let , consequently, one has:
On the other hand,

using (21), one obtains:

(35)

Consequently, one obtains the closed-form expression

(36)

(37)

A. The Deterministic Case

Plugging (27) and (28) into (36), one obtains

(38)

where

(39)

in which

(40)

and where

in which denotes the element wise product and where

B. The Stochastic Case

Plugging (33) and (34) into (36), one obtains

(41)

where

(42)

in which

(43)

and where

(44)
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