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Again, if sources are sub-Gaussian, condition � > 0 ensures that
det(H2) > 0 and, thus, matrix HGJ is positive semidefinite. This
proves that the desired stationary points in J are local minima.

III. REPLY TO COMMENT 2

The second comment refers to the statement in [2] that all undesired
stationary points in group 6 are not local minima. Gu et al. provide a
counterexample to show that this statement is not true. The counterex-
ample shows that, if � = k1 = k2 = 1, the cost function presents an
undesirable local minimum at the point
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582

30
g21 = �g11 g22 = g12 (6)

because its Hessian matrix is positive semidefinite. Thus, it is erroneous
that the same conditions � > 0, k1 < 2, and k2 < 2 that ensured
local convergence to the desired stationary points also guarantee that the
cost function J is not affected by undesired local minima. However, the
counterexample does not exclude the possibility that other conditions on
�, k1 and k2 ensure the inexistence of undesired local minima. It is im-
portant, for instance, to highlight that when k1 = k2 = 1, g21 = �g11,
and g22 = g12, the first derivatives of the cost function take the form
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12 2jg12j2+4jg11j2�2+�jg12j2 ��jg11j2g�12: (8)

It is straightforward to show that these two equations vanish only when
� = 1. As a consequence, the convergence to the undesirable stationary
point given by (6) can be avoided by simply selecting � 6= 1. Unfor-
tunately, the existence of other undesirable minima in group 6 is still
an open question and a more detailed analysis should be carried out in
order to provide a definitive answer.

Nevertheless, we want to recall that the analysis of the stationary
points in J is rather cumbersome and for this reason we only consid-
ered two sources and a two-output separating system. We did not suc-
ceed in extending the analysis to the general case of N sources. On
the other hand, we investigated in [3] a more general family of cost
functions for blind source separation  which utilizes the Shalvi and
Weinstein criterion1 for blind equalization [4] and fourth-order cross
cumulants, instead of cross correlations. Both terms are related through
a weighting parameter that we denoted by . The stationary point anal-
ysis of  is carried out in [3] for the general case ofN complex-valued
sources. If all the sources are either sub-Gaussian or super-Gaussian,
we show that the condition  > 0 is sufficient to guarantee that the
desired stationary points where each output extracts a single source are
local minima. In addition, the condition  > 1 is sufficient to ensure
that the cost function  does not contain any undesired local minima.
Comment 2 does not apply to  since no similar counterexample can
be provided to refute that it does not contain undesired local minima.
The pitfall in the convergence analysis of [2] does not occur in [3].

1Note that this criterion contains CM as a particular case.
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Abstract—This correspondence deals with the problem of estimating
signal parameters using an array of sensors. In source localization, two
main maximum-likelihood methods have been introduced: the conditional
maximum-likelihood method which assumes the source signals nonrandom
and the unconditional maximum-likelihood method which assumes the
source signals random. Many theoretical investigations have been already
conducted for the large samples statistical properties. This correspon-
dence studies the behavior of unconditional maximum likelihood at high
signal-to-noise ratio for finite samples. We first establish the equivalence
between the unconditional and the conditional maximum-likelihood
criterions at high signal-to-noise ratio. Then, thanks to this equivalence
we prove the non-Gaussianity and the non-efficiency of the unconditional
maximum-likelihood estimator. We also rediscover the closed-form ex-
pressions of the probability density function and of the variance of the
estimates in the one source scenario and we derive a closed-form expression
of this estimator variance in the two sources scenario.

Index Terms—Asymptotic performance, Cramér–Rao bound, finite
number of data, high signal-to-noise ratio, unconditional maximum
likelihood.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation using an array of spatially
distributed sensors has received a significant attention in the signal pro-
cessing literature. Initial motivation was the military framework with
applications such as radar and sonar. More recently, DOA estimation
has also been applied to other frameworks such as friendly communica-
tion. For these numerous applications, the resolving power of the algo-
rithm is of the utmost importance. This is why various algorithms have
been proposed in the literature with a resolution which is better than
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the traditional Rayleigh beam-width [1]–[4]. An alternative to these al-
gorithms is the maximum-likelihood (ML) method which has been ex-
tensively studied for its attractive statistical properties. When applying
the ML technique to the sensor array problem, two main methods have
been considered, depending on the model assumption on the signal
waveforms. When the source signals are modeled as Gaussian random
processes, an unconditional ML (UML) is obtained (see [5]–[7]). If, on
the other hand,when the source signals are modeled as unknown deter-
ministic quantities, the resulting estimator is referred as the conditional
ML (CML) estimator (see [7]–[9]).

This correspondence deals with the asymptotic performance of the
UML method. The term “asymptotic” can be understood in two dif-
ferent ways: in the number T of samples and in the signal-to-noise ratio
(SNR). Asymptotic performance in the number T of samples (for finite
SNR) have been extensively investigated [7], [10]–[12]. Concerning
the asymptotic performance when the SNR tends to infinity (for finite
T ), few works are available. Under the deterministic model, the CML is
Gaussian and efficient (it achieves the conditional Cramér–Rao bound)
[13], [14]. The present work is devoted to the analysis of the UML be-
havior, under the stochastic signals model, when the SNR tends to in-
finity (for finite T ): this is the meaning of asymptotic in this correspon-
dence. Note that in [15], Athley has observed, with the help of simula-
tion results, that the UML estimates are nonefficient at high SNR. The
proposed paper aims to soundly establish the asymptotic non-Gaus-
sianity and the asymptotic nonefficiency (in comparison with the un-
conditional Cramér–Rao bound) of the UML estimator in the multiple
parameters case.

We have already investigated the UML asymptotic behavior for a
single source [16]. The proposed paper generalizes these preliminary
results to multiple sources case, providing an extended and detailed
version of works reported in conference papers [17] and [18]. We first
show that, at high SNR, unconditional and conditional maximum-like-
lihood criterions (UMLC and CMLC) are equivalent in the sense that,
with the same observations, they give the same estimates. This prelim-
inary result is the key point for proving that the UML estimates are
non-Gaussian and non-efficient when the SNR tends to infinity for any
number of sources contrary to the large number of observations case.
Finally, we establish a closed-form of the UML estimator variance in
the case of two uncorrelated sources for centro-symmetric arrays.

In the sequel, a sample of a random vector y is denoted y(!), where
! belongs to the event space 
.

II. PROBLEM SETUP

Let us consider the classical problem of localizing N narrow-band
sources impinging on an array of M sensors. The vector xt (!) of sen-
sors outputs is given by the following equation [9]:

xt (!) = A(���0)st (!) + nt (!) (1)

where t = 1; 2; . . . ; T and where T is the number of snapshots.
���= [�1; �2; . . . ; �N ]

T denotes the candidate vector of the N DOAs
whose exact value is ���0. A (���) = [a (�1) ; a (�2) ; . . . ; a (�N)] is the
M � N steering matrix. st (!) is the N� 1 vector of the N source
signals. nt (!) is the M� 1 vector of the noise.

In the sequel N (!)= [n1 (!) ;n2 (!) ; . . . ;nT (!)], and
S (!)= [s1 (!) ; s2 (!) ; . . . ; sT (!)].

The following assumptions will be used:
A1) The signal st (!) is the sample of the random vector st which is

complex, circular, Gaussian, temporally white with zero mean,
and covariance matrix ���s = ssH where denotes the
expectation operator.

A2) The noise nt (!) is the sample of the random vector nt which
is complex, circular, Gaussian, spatially and temporally white
with zero mean, and covariance matrix ���n = nnH =
�2IM where IM is the M �M identity matrix.

A3) ka (�)k =
p
M .

A4) The number of sources is less than the number of sensors,M >
N .

Note that the model used in A1 differs from the conditional model,
for which the signal st is deterministic.

III. HIGH SNR EQUIVALENCE OF THE CONDITIONAL CRITERION

AND UNCONDITIONAL CRITERION

In this section, we recall the definition of the CMLC and of the
UMLC and we prove the equivalence of these two criterions at high
SNR in the sense where, with the same observations, they lead to the
same estimates.

A. Conditional and Unconditional Maximum-Likelihood Criterion

In the conditional model case, the DOAs are obtained by minimiza-
tion of the concentrated criterion [9]:

CCML (���) =
1

M �N
Tr ���?A (���)���x (2)

where Tr f:g is the trace operator, where ���x =
(1=T ) T

t=1
xt (!)x

H

t (!) is the observations sample covariance
matrix, and ���?A (���) = IM � A (���) AH (���)A (���)

�1
AH (���)

denotes the orthogonal projector onto the noise subspace. In the
sequel, the Moore–Penrose inverse AH (���)A (���)

�1
AH (���),

where A (���) is a full-column rank matrix, will be denoted Ay (���).
In the stochastic model case, the DOAs are obtained by minimization

of the concentrated criterion [9]:

CUML (���) = A (���)RsA
H (���) + �̂2IM (3)

with

Rs (���) = Ay (���) ���x � �̂2 (���) IM AyH (���) ;

�̂2 (���) = 1

M�N
Tr ���?A (���) �̂̂�̂�x ;

(4)

where j:j denotes the determinant.
By substituting (2) and (4) into (3), we straightforwardly obtain

CUML (���) = ���A (���)���x���A (���) + CCML (���)���
?
A (���) (5)

where ���A (���) = A(���)Ay (���) denotes the orthogonal projector onto
the signal subspace.

B. Equivalence

Proposition 1: At high SNR, the UMLC and the CMLC are equiva-
lent in the sense where the difference of DOAs obtained by minimiza-
tion ofCUML (���) andCCML (���) tends to zero in probability when SNR
tends to infinity.

Elements of Proof: Let Es (���) and En (���) be the M � N and
M � (M �N) matrices built with the orthonormal bases of signal
and noise subspaces and set E (���) be the M � M matrix such that
E (���) = [Es (���) ; En (���)]. Equation (5) becomes

CUML (���)

= E
H (���) ���A (���)���x���A (���) + CCML (���)���

?
A (���) E (���)

=
EHs (���)���xEs (���) 0

0 CCML (���) IM�N

: (6)
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The matrix involved in the determinant (6) is block diagonal so that
CUML (���) can also be written as follows by writing down explicitly the
dependance of each terms on the noise and ���

CUML (���;N (!))

= E
H
s (���)���x (���;N(!))Es(���) CCML(���;N (!))M�N : (7)

Note that the minimization of CUML (���;N (!)) is equivalent to the
minimization of ~CUML (���;N (!)) = (CUML (���;N (!)))1=(M�N),
consequently we will study

~CUML (���;N (!))

= E
H
s (���)���x(���;N(!))Es(���)

1=(M�N)

CCML(���;N (!)) : (8)

The right-hand side of (8) is the product of two terms. Let us set

� (���;N (!)) = E
H
s (���)���x (���;N (!))Es (���)

1=(M�N)

: (9)

A Taylor expansion at order zero around (���0;0) of � (���;N (!))
leads to

� (���;N (!)) = � (���0;0) + o (1) (10)

where o denotes the small oh notation and where

� (���0;0) = E
H
s (���0)A(���0)���sA

H(���0)Es (���0) 6= 0 (11)

where ���s = (1=T ) T
t=1 st (!) s

H
t (!). Consequently, the first non-

null term of a Taylor expansion of � (���;n) around ���=���0 andN (!) =
0 is � (���0;0). Concerning the term CCML (���;N (!)), a Taylor expan-
sion at order two around (���0;0) leads to

CCML (���;N (!))

= CCML (���0;0) +���T
G+

1

2
���T �H���+o k���k2 (12)

where k:k denotes the norm, where

��� = (�������0)
T ; vec (Re fN (!)g)T ; vec (Im fN (!)g)T

T

(13)

where Re fg and Im fg denotes the real and imaginary part, respec-
tively, and where vec denotes the vec operator. G is the gradient of
CCML (���;N (!)) at (���0;0)

G =
@CCML (���;N (!))

@��� ��� ;0

T

@CCML (���;N (!))

@vec (Re fN (!)g) ��� ;0

T

@CCML (���;N (!))

@vec (Im fN (!)g) ��� ;0

T T

(14)

and �H is the Hessian matrix of CCML (���;N (!)) at (���0;0), as shown
by (15) at the bottom of the page.

For (���;n) = (���0;0), CCML (���;N (!)) is minimal and null. Conse-
quently

CCML (���0;0) = 0 andG = 0 (16)

and

CCML (���;N (!)) =
1

2
���T �H���+o k���k2 : (17)

Therefore, the first non-null term of its Taylor expansion around
���=���0 and N (!) = 0 is (1=2)���T �H�. Consequently

~CUML (���;N (!)) =
1

2
� (���0;0)���

T �H���+o k���k2

=� (���0;0)CCML (���;N (!))+o k���k2 :

(18)

Consequently, at high SNR, since ~CUML (���;N (!)) is the product
of CCML (���;N (!)) by a non-null constant, both criterions provide the
same estimates, concluding the proof.

IV. NON-GAUSSIANITY OF THE UML

In the sequel, concerning source signals, we are in the sto-
chastic model framework of assumption A1 and we note ��� =
argmin

���
CUML (���) the UML estimator. The next theorem establishes

the asymptotic distribution of ��� and its non-Gaussianity for any
number of sources (the single source case has already been reported
in [16])

Theorem 1: Let ��� = (1=�) ��� � ���0 . When SNR tends to infinity,

��� is non-Gaussian and converges in distribution to C(���0)y, where y
is a N� 1 Gaussian vector with zero mean and covariance matrix IN
and C (���0) is any N � N random matrix independent of vector y,
satisfying

C(���0)C
T (���0) =

1

2T
Re H (���0)� �̂̂�̂�

T

s

�1

(19)

where� denotes the Hadamard product (element by element product),
and whereH (���0) is a N �N deterministic matrix which contains the
information about the DOA’s and about the array structure

H (���0) = D
H (���0)���

?
A (���)D (���0) (20)

with

D (���0) =
da (�)

d� �

;
da (�)

d� �

; . . . ;
da (�)

d� �

: (21)

Note that in (19), T �̂̂�̂�s is a N �N random matrix which follows a
complex Wishart distribution with T degrees of freedom and parameter
matrix the covariance ���s of source signals st.

Proof: From proposition 1, we consider that �̂̂�̂� is obtained by min-
imization of CCML (���) given by (2). Thanks to [14], at high SNR, the

conditional distribution f ��� j S is Gaussian with asymptotic covari-
ance given by the conditional Cramér–Rao bound, see [11]

BCOND (���0) =
1

2T
Re H (���0)����

T

s

�1

: (22)

Let us set BCOND (���0) = C(���0)C
T (���0). Therefore, the asymp-

totic (in SNR) conditional distribution f ��� j S is the same as the dis-

tribution of C(���0)y, where y is a Gaussian random vector with zero

�H =

@ C (���;N(!))

@���@��� ��� ;0

@ C (���;N(!))

@���@vec (RefN(!)g) ��� ;0

@ C (���;N(!))

@���@vec (ImfN(!)g) ��� ;0

@ C (���;N(!))

@���@vec (RefN(!)g) ��� ;0

@ C (���;N(!))

@vec(RefN(!)g)@vec (RefN(!)g) ��� ;0

@ C (���;N(!))

@vec(RefN(!)g)@vec (ImfN(!)g) ��� ;0

@ C (���;N(!))

@���@vec (ImfN(!)g) ��� ;0

@ C (���;N(!))

@vec(RefN(!)g)@vec (ImfN(!)g) ��� ;0

@ C (���;N(!))

@vec (ImfN(!)g)@vec(ImfN(!)g) ��� ;0

(15)
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mean and covariance matrix IN and where C(���0) is a deterministic
matrix. Consequently, the asymptotic (in SNR) marginal distribution
f ��� is the same as that of C(���0)y where y is a Gaussian random

vector with zero mean and covariance matrix IN and where C(���0)
becomes a random matrix since, in (19), T���s is complex Wishart dis-
tributed withT degrees of freedom, and parameter matrix���s the source
signals covariance. SinceC(���0) becomes a random matrix, the product
C(���0)y cannot be Gaussian which completes the proof.

V. NONEFFICIENCY OF THE UML ESTIMATOR

In order to proof the nonefficiency of the UML estimator, the
comparison between the asymptotic covariance of the UML estimator
and the Unconditional Cramér–Rao Bound (UCRB) is provided in this
section.

A. Asymptotic Covariance of ���

Corollary 1: Let cov ��� = ������
T

be the covariance of ���. Then,
from the above section, we have straightforwardly

lim
�!0

cov ��� = Cyy
T
C
T = [CCT ];

=
1

2T
Re H (���0)� �̂̂�̂�

T

s

�1

: (23)

B. Performance Bound

According to [11], the UCRB can be written as follows:

BUCOND (���0)

=
�2

2T
Re H (���0)� ���sA

H (���0)���
�1

x A (���0)���s

T
�1

(24)

where ���x is the covariance matrix of the observations.
By using relation [11, (3.20)], it is shown that in (24)

A
H (���0)���

�1

x A (���0) = ���s + �2 A
H (���0)A (���0)

�1
�1

(25)

which tends to ����1s when � tends to 0. It follows

lim
�!0

BUCOND (���0)

�2
=

1

2T
Re H (���0)����T

s

�1

: (26)

C. Nonefficiency of the UML Estimator

In order to prove the nonefficiency of the UML estimator for any
number of sources, the following theorem will be of interest. Note that
this is a matrix extension of the well-known Jensen’s inequality. This
theorem has been proved in [19] without the equality condition which
will be of particular interest here.

Theorem 2: Let��� be a N�N real positive definite random matrix.
Then

����1 � ( [���])�1 (27)

with equality if and only if��� is a constant matrix with probability one.
Appendix A details the proof.

Corollary 2: Let us set ��� = 2TRe H (���0)� �̂̂�̂�
T

s in (26) and
(23). Equation (27) becomes the Cramér–Rao inequality. Since ��� is
not a constant matrix with probability one, the inequality is strict and
the UML estimator is nonefficient for any number of sources.

VI. SPECIFIC PERFORMANCE STUDY OF THE UML ESTIMATOR

FOR THE TWO SOURCES SCENARIO

This section is devoted to a deeper statistical investigation of two
specific cases frequently met in array processing: the single– and two-
sources case. We remind the probability density function (pdf) and the
variance closed form of the UML estimates in the single-source case te-
diously obtained in [16]. For two uncorrelated sources and centro-sym-
metric arrays, we give a closed-form expression of the UML estimates
covariance.

A. Distribution and Theoretical Variance in the Single Source Case

In the single-source case, ���s = �1 andH = h1. Then ~� is asymp-
totically distributed as

p
kS2T , whereS2T is a Student random variable

with 2T degrees of freedom and k is given by

k = lim
�!0

BUCOND (���0)

�2
=

1

2Th1�1
: (28)

The asymptotic variance of ~� is then given by

var(~�) =
T

T � 1
k: (29)

As established in Theorem 2, for finite T , the UML estimator is not
asymptotically efficient since T=(T � 1) > 1.

B. Theoretical Variance in the Two Sources Case for Uncorrelated
Sources and Centro-Symmetric Array

Most arrays met in practice possess a center of symmetry (this is
for instance the case of the ULA). Under this condition which will be
assumed in the following, the matrix H of (20) is real and symmetric
(see Appendix B):

H (���0) =
h1 h3
h3 h2

: (30)

For two uncorrelated sources,���s = Diag f�1; �2g and the asymp-
totic covariance of ~�~�~� is given by

lim
�!0

cov ~�~�~� =
1

2

2F1 1; 1; 2T ;
h

h h

T � 1
Diag

1

h1�1

;
1

h2�2

;

=
T

T � 1
2F1 1; 1; 2T ;

h23
h1h2

K (31)

whereK = lim�!0 (BUCOND (���0)=�
2) and where 2F1 (a; b; c;!) is

the Gauss hypergeometric function defined by its integral representa-
tion [20, pp. 558]

2F1 (a; b; c;!)

=
� (c)

� (b)� (c� b)

1

0

zb�1 (1� z)c�b�1 (1� z!)�adz (32)

where � (z) denotes the Gamma function � (z) =
1

0
tz�1e�tdt.

The derivation of (31) is given in Appendix C. As expected, the UML
estimator is not asymptotically efficient since T=(T � 1) > 1 and
2F1 1; 1; 2T ;h23=h1h2 � 1.

VII. SIMULATION EXAMPLES

In this section, results of some Monte Carlo simulations concerning
the UML estimator are presented. The purpose is to illustrate the appli-
cability of the derived expressions of the pdf and of the variance. In all
simulations, the array is an ULA of M = 10 sensors with half-wave-
length spacing (the beamwidth of the array is equal to 10�). The UML
DOA estimation is conducted with T = 2 snapshots. We consider the
case of two uncorrelated sources with equal power located at 0� and 5�.
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Fig. 1. Asymptotic variance of the UML estimator in the two-sources case.
��� = [0 ; 5 ], T = 2 snapshots and M = 10 sensors.

Fig. 2. Histogram of UML estimates in the two-sources case. ��� = [0 ; 5 ],
M = 10 sensors, T = 2 snapshots, and SNR = 30 dB.

DOA are given with respect to the broadside. The ML DOA estimation
is performed with a Gauss–Newton algorithm thanks to a global search
over a grid.

We have reported in Fig. 1 the evolution of the UML empirical vari-
ance, of the theoretical variance (31), and of the UCRB versus SNR.
Monte Carlo simulations have been performed with r = 1000 indepen-
dent realizations. Here, (T=T � 1) 2F1 1; 1; 2T ;h23=h1h2 = 2:9. In
this asymptotic region, one can notice the good match between theo-
retical results and simulations. The nonefficiency of UML at high SNR
is observed. We also observe the well-known threshold effect [21] of
the estimator variance when the SNR becomes weak (approximatively
20 dB in this case). This phenomena due to outliers gives the validity
domain this asymptotic analysis (see [15] for more details concerning
the UML threshold prediction).

Fig. 2 gives the histograms of the estimated DOA corresponding
to the previous case with Monte Carlo simulations performed with
r = 10000 independent realizations and a SNR of 30 dB. We also
reported the pdf of a Gaussian distribution with the same variance. The
non-Gaussianity of the UML estimates is observed. To confirm this

TABLE I
CHI-SQUARE TEST IN THE TWO SOURCES CASE. k = 15 BINS, r = 10000

REALIZATIONS. ��� = [0 ; 5 ], M = 10 SENSORS, T = 2 SNAPSHOTS,
AND SNR = 30 dB

“visual” result, we have used the classical Chi-square test which tests
a distribution observed against another theoretical distribution. For the
Chi-square fit computation, the data are divided into k = 15 bins and
the statistical test requires the computation of

� =

k

i=1

(Oi � rpi)
2

rpi
(33)

where Oi is the observed frequency for bin i, and pi is the candidate
probability for bin i. The hypothesis that the data are from a population
following the candidate distribution is rejected if

Pr (X � �) =
� k�1

2
; �
2

� k�1

2

� 5% (34)

where X follows a Chi-square distribution with k � 1 degrees of
freedom. Table I shows that the pdf of the estimates is not Gaussian
for a SNR of 30 dB.

VIII. CONCLUSION

The statistical properties of the UML estimator have been investi-
gated. We have shown that, for any number of sources, this estimator is
non-Gaussian and nonefficient at high signal-to-noise ratio for a finite
number of samples. The key point of the analysis is the equivalence
between the UML and the CML method at high SNR. Moreover, we
have provided the UML estimator covariance closed-form expression
for two uncorrelated sources and centro-symmetric array.

APPENDIX A
PROOF OF THE UML NONEFFICIENCY

Lemma 1: Let


 be aN�N real symmetric positive semidefinite
matrix. Then 8q

q
T


q + q

T


�1q�2qTq � 0 (35)

with equality if and only if q is an eigenvector of 


 with eigenvalue
one.

Proof: Let us set 


 = N

i=1
�irir

T

i the eigendecomposition of



 on an orthonormal basis frigi=1...N with associated eigenvalues �i.
Equation (35) can be written as

N

i=1

�i � 2 +
1

�i
q
T
ri

2

� 0: (36)

Noticing that �i�2+1=�i � 0 for �i > 0, and that �i�2+1=�i =
0 for �i = 1 the proof is straightforward.

Lemma 2: Let 


 a N � N random real symmetric positive
semidefinite matrix with probability one such that [


] = IN . Then
there is a vector q such that

q
T 


�1 q � q

T
q > 0 (37)

if and only if Pr [


 = IN ] 6= 1.
Proof: Let us set �q = qT


q+qT


�1q�2qTq. Since [


] =

IN , we have [�q] = qT 


�1 q � qTq. Consequently, proving
Lemma 2 amounts to prove that 9q such that [�q] > 0 if and only
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if Pr [


 = IN ] 6= 1. From (35) �q is a nonnegative random variable.
Thus, [�q] > 0 if and only if Pr [�q = 0] 6= 1. From lemma 1,
Pr [�q = 0] = Pr [


q = q]. Consequently

8qPr [�q=0]=1()8qPr [


q=q]=1()Pr [


=IN ]=1:

This completes the proof.
Finally, with the notations of Theorem 2, let us set 


 =
[���]�1=2��� [���]�1=2. Theorem 2 follows from Lemma 2.

APPENDIX B
STUDY OF MATRIX H CENTRO-SYMMETRIC SENSOR ARRAYS

We prove in this appendix that H [see equation (20)] is a real sym-
metric matrix. It is obvious that H is an hermitian matrix. Therefore,
we must prove that H is a real matrix under the assumption that the
array has a center of symmetry

H (���0) =D
H (���0)���

?

A (���)D (���0)

=DH (���0)D (���0)� A
H (���0)D (���0)

H

� A
H (���0)A (���0)

�1

A
H (���0)D (���0) : (38)

The ith element of the steering vector is1

ai (�k) = ej(2�=�)v u(� ) (39)

where vi is the coordinate vector of the ith sensor, and u (�k) is the
unit vector pointing towards the kth source. Therefore, the ith element
of d (�k) = da (�)=d�j� [see (21)] is

di (�k) = j
2�

�
v
T
i
du

d� �

_u(� )

ej(2�=�)v u(� ): (40)

If the array has a center of symmetry, the sensors can be labeled so
that vi = �vM�i+1. The mth row and nth column element of each
term in (38) is as shown by (41) at the bottom of the page.
AH (���0)A (���0) m;n is a sum of two by two complex conjugates

with the same magnitude.2 Therefore, AH (���0)A (���0) m;n 2 . Sim-

ilarly, DH (���0)D (���0) m;n 2 since vTi _u (�m) vTi _u (�n) =

vTM�i+1 _u (�m) vTM�i+1 _u (�n) , and AH (���0)D (���0) m;n 2 ,
as shown by (42) at the bottom of the page.

Therefore, H is a real symmetric matrix.

1� is the wavelength of emitted signals.
2If the number of sensors is odd, v = 0.

APPENDIX C
THEORETICAL VARIANCE IN THE TWO-SOURCES CASE

According to (23), and with the assumption that the array has a center
of symmetry, i.e., H (���0) becomes a real symmetric matrix

lim
�!0

cov ��� =
1

2T
H (���0)� Re �̂̂�̂�

T

s

�1

=
1

2
(H (���0)� Re (W))�1 (43)

whereW is aN�N random matrix which follows a complex Wishart
distribution with T degrees of freedom and parameter matrix the co-
variance, ���s = Diag f�1; �2g, of source signals st.

Under assumptions A1 and uncorrelated sources, WR = Re fWg
is a N �N symmetric positive definite random matrix which follows
a real Wishart distribution with 2T degrees of freedom and param-
eter matrix the covariance (1=2)���s. From the Cholesky factorization,
WR = DDT , with

D =
�1 0

� �2
: (44)

The elements of D are independent and satisfy [22]

�1
�
2
�2 (2T )

�2
�
2
�2 (2T � 1)

� N 0; �
2

(45)

where N (0; ") is a Gaussian distribution with mean value 0 and vari-
ance " and where �2(P ) is a Chi-square distribution with P degrees
of freedom.

The covariance of ��� is given by

lim
�!0

cov ��� =
var(~�1) 	

	 var(~�2)
(46)

=
1

2
(H (���0)�WR)

�1

=
1

2

1

�

h2 �22 + �2 �h3�1�

�h3�1� h1�
2
1

(47)

where var(~�1) (respectively, var(~�2)) is the variance of the first source
(respectively, the second source), 	 is the cross-correlation and � =
h1h2�

2
1 �22 + �2 � (h3�1�)

2.
From (47)

var(~�1) =
1

2

h2 �22 + �2

h1h2�21 (�
2
2 + �2)� (h3�1�)

2

=
1

2h1

1

�21

1

1�
h

h h
�

� +�

(48)

AH (���0)A (���0) m;n =
M

i=1

ej(2�=�)v (u(� )�u(� ))

DH (���0)D (���0) m;n =
M

i=1

2�
�

2
vTi _u (�m) vTi _u (�n) ej(2�=�)v (u(� )�u(� ))

AH (���0)D (���0) m;n =
M

i=1

j 2�
�

vTi _u (�n) ej(2�=�)v (u(� )�u(� ))

(41)

A
H (���0)D (���0)

m;n
= j

2�

�

M=2

i=1

v
T
i _u (�n) ej(2�=�)v (u(� )�u(� )) � e�j(2�=�)v (u(� )�u(� ))

imaginary number

: (42)
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where �2 (�2=2)�
2 (1) and the ratio �2=(�2 + �22) = Z follows

a beta distribution with 1 and 2T � 1 degrees of freedom which is
independent of Y = �21. Therefore, (48) becomes

var(~�1) =
1

2h1

1

Y

1

1�
h

h h
Z

=
I1I2
2h1

: (49)

I1 = [1=Y ] and I2 = 1=(1� (h23=h1h2)Z) satisfy

I1 =
1

0
1
y
�� (y) dy

I2 =
1

0
1

1� z

�� (z) dz (50)

where �� (y) and �� (z) are, respectively, the probability density
functions of a chi-square random variable (�1=2)�2 (2T ) and of a beta
random variable � (1; 2T � 1)

�� (y) = 1
2 �(T )�

yT�1e�y=�

�� (z) = (2T � 1) (1� z)2(T�1) :
(51)

When T � 2, I1 converges, it is a Gamma function. I2 is the integral
representation of a Gauss hypergeometric function [20, pp. 556–565]

2F1 (a; b; c;!)

=
� (c)

� (b)� (c� b)

1

0

zb�1 (1� z)c�b�1 (1� z!)�adz (52)

where a = 1, b = 1, c = 2T and ! = h23=h1h2. Note that (52) is
finite

for all (a; b; c) ; if �1 < ! < 1

for c > a+ b; if ! = �1.
(53)

In our case, H is a semi positive definite matrix, then jHj � 0 ,
! = h23=h1h2 � 1. It signifies that I2 is finite for T � 2.

Finally

I1 =
1

(T�1)�
;

I2 =2F1 1; 1; 2T ;
h

h h
:

(54)

and

var(~�1) =
2F1 1; 1; 2T ;

h

h h

2 (T � 1)h1�1
: (55)

Similarly

var(~�2) =
2F1 1; 1; 2T ;

h

h h

2 (T � 1)h2�2
: (56)

It can be easily shown that 	 = 0 [see (46)]: it is the integral from
minus infinity to plus infinity of an odd function of the variable �.

According to (26), the UCRB in the two sources case is

lim
�!0

1

�2
BUCOND (���0) =

1

2T
Diag

1

h1�1
;

1

h2�2
: (57)

Therefore, using (46), (55)–(57), one obtains (31).
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