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On Lower Bounds for Non-Standard Deterministic
Estimation

Nabil Kbayer, Jérôme Galy, Eric Chaumette, François Vincent, Alexandre Renaux and Pascal Larzabal

Abstract

We consider deterministic parameter estimation and the situation where the probability density function (p.d.f.)
parameterized by unknown deterministic parameters results from the marginalization of a joint p.d.f. depending
on random variables as well. Unfortunately, in the general case, this marginalization is mathematically intractable,
which prevents from using the known standard deterministic lower bounds (LBs) on the mean-squared-error (MSE).
Actually the general case can be tackled by embedding the initial observation space in an hybrid one where any
standard LB can be transformed into a modified one fitted to non-standard deterministic estimation, at the expense
of tightness however. Furthermore, these modified LBs (MLBs) appears to include the sub-matrix of hybrid lower
bounds which is a LB for the deterministic parameters. Moreover, since in non-standard estimation, maximum
likelihood estimators (MLEs) can be no longer derived, suboptimal non-standard MLEs (NSMLEs) are proposed as
being a substitute. We show that any standard LB on the MSE of MLEs has a non-standard version lower bounding
the MSE of NSMLEs. We provide an analysis of the relative performance of the NSMLEs, as well as a comparison
with the modified LBs for a large class of estimation problems. Last, the general approach introduced is exemplified,
among other things, with a new look at the well known Gaussian complex observation models.

Index Terms

Deterministic parameter estimation, estimation error lower bound, maximum likelihood estimation.

I. INTRODUCTION

As introduced in [1, p53], a model of the general deterministic estimation problem has the following four
components: 1) a parameter space Θd, 2) an observation space X , 3) a probabilistic mapping from parameter
vector space Θd to observation space X , that is the probability law that governs the effect of a parameter vector
value θ1 on the observation x and, 4) an estimation rule, that is the mapping of the observation space X into vector
parameter estimates θ̂ (x). Actually, in many estimation problems [1][2][3][4], the probabilistic mapping results
from a two steps probabilistic mechanism involving an additional random vector θr, θr ∈ Θr ⊂ RPr , that is i)
θ → θr ∼ p (θr;θ), ii) (θ,θr) → x ∼ p (x|θr;θ), and leading to a compound probability distribution:

p (x,θr;θ) = p (x|θr;θ) p (θr;θ) , (1a)

p (x;θ) =

∫
Θr

p (x,θr;θ) dθr, (1b)
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where p (x|θr;θ) is the conditional probability density function (p.d.f.) of x given θr, and p (θr;θ) is the prior
p.d.f., parameterized by θ. Therefore, deterministic estimation problems can be divided into two subsets: the subset
of ”standard” deterministic estimation problems for which a closed-form expression of p (x;θ) is available, and
the subset of ”non-standard” deterministic estimation problems for which only an integral form of p (x;θ) (1b) is
available.

In any estimation problem, having explicit expressions for lower bounds on estimators performance is desired,
since it can give insight on the inherent limitations of the problem, as well as being a reference to the optimality
of the various estimators. For a long time, the open literature on deterministic lower bounds (LBs) on the mean
squared error (MSE) has remained focused on standard estimation [5]-[21]. One noteworthy point is that all the
LBs introduced in standard estimation derive, directly [22][23][24] or indirectly [18][25], from the seminal work of
Barankin [11], who established the general form of the greatest lower bound on any sth absolute central moment
(s > 1) of a uniformly unbiased estimator with respect to p (x;θ), generalizing the earlier works of Fisher [5],
Frechet [6], Darmois [7], Cramér [8], Rao [9] and Battacharayya [10]. It is likely that the first LBs derived in the
non-standard case appeared in [2], [3] and [4], to characterize three estimation problems which differ from one
another mainly in the status of the additional random vector θr. In [2], authors derived a LB for estimators of θ
uniformly unbiased for all values of θr, that is uniformly unbiased with respect to p (x|θr;θ). In such a setting, θr is
treated as a nuisance parameter vector, i.e., it is not a parameter vector of interest, but the estimate of the interesting
parameter vector θ is nevertheless dependent on it. The LB obtained, aka the Miller and Chang bound (MCB), can
be regarded as the first LB on the MLE of θ deriving from p (x|θr;θ) in place of p (x;θ), hereinafter referred to
as a non-standard MLE (NSMLE) of θ. In [3], both θ and θr are parameter vectors of interest and the LB derived
is the first hybrid LB (HLB), that is a LB for a hybrid parameter vector consisting of a mixture of deterministic and
random parameters. In [4], θr is an unwanted parameter vector introduced by a two steps probabilistic mechanism
(1a-1b) which estimation is not of interest, and the LB derived is the first LB in non-standard estimation for
unbiased estimates in the Barankin sense, hereinafter referred to as a modified LB (MLB). Specifically, [2], [3]
and [4] introduced three variants of the standard deterministic Cramér-Rao bound (CRB) [5][6][7][8][9] suitable
for non-standard estimation, namely the MCB, the hybrid CRB (HCRB) and the modified CRB (MCRB)2. Later
on, Reuven and Messer [29] put forward the so-called hybrid Barankin bound (HBB), that is a Barankin-type LB
on the MSE of a hybrid parameter vector. It is noteworthy that the deterministic part3 of the HBB provides a LB
on the deterministic parameters able to handle the MSE threshold phenomena [17][19][20][22][23][24], and that
one limiting form yields the HCRB [3]. This seminal work fitted to the hybrid estimation framework has naturally
contributed to disseminate the concept of a framework where the random variables (θr) marginalized out (1b) are
regarded as unknown nuisance random parameters to be estimated. This is unambiguously recalled in abstracts and
introductions of subsequent papers dealing with non-standard estimation such as [30]-[42].

As a first contribution sketchily disclosed in [43], a unified framework for the derivation of LBs on the MSE for
unbiased estimates in non-standard estimation is more fully developed. The proposed framework exploits the fact
that the MSE is the square of a norm defined on the vector space of square integrable functions θ̂ (x) and, therefore,
all known standard LBs on the MSE can be formulated as the solution of a norm minimization problem under
linear constraints [20][23][25][44]. This formulation of LBs not only provides a straightforward understanding of
the hypotheses associated with the different LBs [20][23][44] (briefly overviewed in Section II), but also allows
to obtain a unique formulation of each LB in terms of a unique set of linear constraints. Interestingly enough,
the ”norm minimization” approach simply exploits the general form of the marginalization formula (1b), that is
p (x;θ) is simply the result of marginalizing over the intermediate random variables θr, without any reference
to extraneous or nuisance random parameters. As an immediate consequence, which goes beyond mere semantic
features, θr is neither required nor expected to be estimated when searching for LBs for unbiased estimates of θ
in non-standard estimation. Indeed, the proposed rationale brings to light that the lack of a closed-form for the
marginal p.d.f. p (x;θ) simply compels to embed the initial norm minimization problem on observation space X
into the same norm minimization problem but on X ×Θr, leading to the derivation of LBs for unbiased estimator
θ̂ (x,θr) of θ in place of unbiased estimators θ̂ (x) of θ. This embedding mechanism allows to show that any

2For the sake of completeness: i) CRBs for synchronization parameter estimation derived earlier in [26][27] are in fact MCRBs, ii) [28]
introduced earlier a tighter version of the MCRB [28, (20)] but with sufficient conditions [28, (21)] unnecessary restrictive.

3In the following, the deterministic part of a HLB denotes the HLB’s sub-matrix which is a LB on the MSE of the determinisitic parameter
vector.
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LB derived in standard estimation has an analog form fitted to non-standard estimation obtained by substituting
p (x,θr;θ) for p (x;θ) in the LB definition (see Section III), encompassing the historical LBs such as the MCRB
[4][30] or the modified Bhattacharyya bound (MBaB) [34]. Therefore, it seems appropriate to keep on referring to
these LBs for non-standard estimation as modified LBs (MLBs) as proposed initially in [4].
Further more, the proposed framework naturally allows to obtain tighter MLBs (see Subsections III-B1 and III-B2)
by adding constraints compatible with unbiasedeness, in order to restrict the class of viable estimators θ̂ (x,θr)
and therefore to increase the minimum norm obtained. It is exemplified with two general subsets of additional
constraints. The first subset yields the deterministic part of the class of HLBs based on linear transformation on
the centered likelihood-ratio (CLR) function [45], which includes the HCRB [3][30][35], the HBB [29] and their
combination via a compression matrix (the CCLRB) [45]. The second subset, combined with the first one, yields
the deterministic part of an even more general class of HLBs obtained from linear transformation of a mixture of
the McAulay-Seidman bound (MSB) and Bayesian lower bounds of the Weiss-Weinstein family, including the so-
called hybrid McAulay-Seidman-Weiss-Weinstein bound (HMSSWB) [46]. It is noteworthy that the proposed unified
framework allows to reformulate all known LBs on the MSE for unbiased estimates in non-standard estimation as a
MLBs without any regularity condition on the (nuisance) random vector estimates, since θr is neither required nor
expected to be estimated. Furthermore, the proposed framework naturally incorporates possible tightness comparison
between two MLBs. Indeed, if the subset of linear constraints associated with a MLB is included into the subset of
linear constraints associated with another MLB, then the latter one is tighter. Thus, the proposed unified framework
is a useful tool to look for the best possible trade-off between tightness, regularity conditions and computational
cost, in the choice of a MLB for a given non-standard estimation problem. Last, the proposed framework not only
proves straightforwardly the looseness of any MLB (including therefore the deterministic part of any HLB) in
comparison with the standard LB, but also provides a very general ”closeness condition” on p (x,θr;θ) in order
to obtain a MLB equal to the standard LB (see Subsection III-C1).

Since in non-standard estimation, maximum likelihood estimators (MLEs) can be no longer derived, ”non-
standard” MLEs (NSMLEs), i.e. joint MLEs of θ and θr w.r.t. p (x|θr;θ), are proposed as being a substitute.
The idea underlying this proposal is that the closed-form of p (x|θr;θ) is known in many estimation problems [47]
and therefore the NSMLEs take advantage not only of asymptotic optimality and unbiasedeness w.r.t. p (x|θr;θ)
of MLEs, but also of the extensive open literature on MLE closed-form expressions or approximations [47]. These
key features clearly make the ”non-standard” maximum likelihood estimation more attractive than joint maximum
a posteriori-maximum likelihood estimation (JMAPMLE), known to be biased and inconsistent in general [48], or
than the Expectation-Maximization algorithm [49], impractical to implement in many non-standard problems of
interest. Furthermore, as exemplified in [2], they are applications where the property of an estimator unbiased for
all values of the random parameter θr is desirable, even if a closed-form expression of p (x;θ) is available. Last, as
mentioned in [50, p. 6, 12], it appears that the NSMLEs are also the asymptotic forms of JMAPMLEs for a class
of hybrid estimation problems when the number of independent observations tends to infinity [51]. To the best of
our knowledge, NSMLEs have not received full attention so far, whereas they may be the only sensible estimators
available in many estimation problems Therefore, as a second contribution we introduce a detailed study of the
asymptotic properties of NSMLEs (see Section IV). Firstly, we show that NSMLEs are asymptotically (when the
number of independent observations tends to infinity) suboptimal and that any standard LB on the MSE of MLEs
has a non-standard version lower bounding the MSE of NSMLEs. Secondly, we exhibit a large class of estimation
problems for which a comparison between non-standard LBs and modified LBs is possible.

Last, the general approach introduced is exemplified with existing application examples and a new look at the
well known Gaussian complex observation models (see Section V-B).
The results introduced in the following are also of interest if a closed-form of p (x;θ) does exist but the resulting
expression is intractable to derive LBs and/or MLEs.
For the sake of simplicity, unless otherwise stated, we will focus on the estimation of a single unknown real
deterministic parameter θ, although the results are easily extended to the estimation of multiple functions of multiple
parameters [23][24] (see Sections III-A1 and V-B for examples).

A. Notations and Assumptions

In the following, the n-th row and m-th column element of the matrix A will be denoted by An,m or (A)n,m.
The n-th coordinate of the column vector a will be denoted by an or (a)n. The scalar/matrix/vector transpose,
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conjugate and transpose conjugate are respectively indicated by the superscripts T , ∗ and H . [A,B] denotes the
matrix resulting from the horizontal concatenation of matrices A and B.

(
aT ,bT

)
denotes the row vector resulting

from the horizontal concatenation of row vectors aT and bT . IM is the identity matrix of order M . 1M is a
M -dimensional vector with all components equal to one. If A is a square matrix, |A| denotes its determinant. For
two matrices A and B, A ≽ B means that A−B is positive semi-definite (Löwner ordering). Furthermore, unless
otherwise stated:
• x denotes a M -dimensional complex random observation vector belonging to the observation space X ⊂ CM , θ
denotes a real deterministic parameter belonging to the parameter space Θd ⊂ R, and θr denotes a Pr-dimensional
real random vector belonging to a subset Θr of RPr .
• p (x; θ), p (x,θr; θ), p (x|θr; θ), p (θr; θ) and p (θr|x; θ) denote, respectively, the marginal p.d.f. of x, the joint
p.d.f. of x and θr, the likelihood function of θr, the prior p.d.f. of θr and the posterior p.d.f. of θr, parameterized
by θ.
• SX , SX ,Θr

, SX|θr
, SΘr

and SΘr|x denote, respectively, the support of p (x; θ), p (x,θr; θ), p (x|θr; θ), p (θr; θ)
and p (θr|x; θ), i.e., SX =

{
x ∈ CM | p (x; θ) > 0

}
, SX ,Θr

=
{
(x,θr) ∈ CM × RPr | p (x,θr; θ) > 0

}
, SX|θr

={
x ∈ CM | p (x|θr; θ) > 0

}
, SΘr

=
{
θr ∈ RPr | p (θr; θ) > 0

}
,

and SΘr|x =
{
θr ∈ RPr | p (θr|x; θ) > 0

}
4.

• Ex;θ [g (x)], Eθr;θ [g (θr)] and Ex,θr;θ [g (x,θr)] denote, respectively, the statistical expectation of the vector of
functions g ( ) with respect to x, to θr, to x and θr, parameterized by θ, and satisfy:

Ex,θr;θ [g (x,θr)] = Ex;θ

[
Eθr|x;θ [g (x,θr)]

]
= Eθr;θ

[
Ex|θr;θ [g (x,θr)]

]
. (2)

• L2(SX ), L2(SX ,Θr
) and L2(SX|θr

) denote, respectively, the real Euclidean space of square integrable real-valued
functions w.r.t. p (x; θ), p (x,θr; θ) and p (x|θr; θ),
• 1A (θr) denote the indicator function of subset A of RPr .

II. AN OVERVIEW OF LOWER BOUNDS FOR STANDARD ESTIMATION

A. On Lower Bounds and Norm Minimization

In the search for a LB on the MSE of unbiased estimators, two fundamental properties of the problem at
hand, introduced by Barankin [11], must be noticed. The first property is that the MSE of a particular estimator
θ̂0 ∈ L2 (SX ) of θ0, i.e., θ̂0 , θ̂0 (x), where θ0 is a selected value of the parameter θ, is the square of a norm ∥ ∥2θ
associated with a particular scalar product ⟨ | ⟩θ:

MSEθ0

[
θ̂0
]
=
∥∥∥θ̂0 (x)− θ0

∥∥∥2
θ0
, (3a)

⟨g (x) | h (x)⟩θ = Ex;θ [g (x)h (x)] . (3b)

This property allows the use of two equivalent fundamental results: the generalization of the Cauchy-Schwartz
inequality to Gram matrices (generally referred to as the “covariance inequality” [21][22]) and the minimization of
a norm under linear constraints [20][23][25][44]. Nevertheless, we shall prefer the ”norm minimization” form as
its use:
• provides a straightforward understanding of the hypotheses associated with the different LBs on the MSE expressed
as a set of linear constraints,
• allows to resort to the same rationale for the derivation of LBs whatever the observation space considered,
• allows to easily reveal LBs inequalities and tightness conditions without the complex derivations (based on the
use of the covariance inequality) introduced by previous works [30][29][52].
The second property is that an unbiased estimator θ̂0 ∈ L2 (SX ) of θ0 should be uniformly unbiased:

∀θ ∈ Θd : Ex;θ

[
θ̂0 (x)

]
=

∫
SX

θ̂0 (x) p (x; θ) dx = θ. (4a)

4The Barankin approach [11] (see Section II) and its extensions to non-standard estimation (see Sections III and IV) require that all the
supports be independent of θ.
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If SX , i.e., the support of p (x; θ), does not depend on θ, then (4a) can be recasted as:

∀θ ∈ Θd : Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0 (x; θ)

]
= θ − θ0, (4b)

where υθ0 (x; θ) = p (x; θ) /p
(
x; θ0

)
denotes the Likelihood Ratio (LR). As a consequence, the locally-best (at θ0)

unbiased estimator in L2 (SX ) is the solution of a norm minimization under linear constraints:

min
θ̂0∈L2(SX )

{∥∥∥θ̂0 (x)− θ0
∥∥∥2
θ0

}
under

⟨
θ̂0 (x)− θ0 | υθ0 (x; θ)

⟩
θ0

= θ − θ0, ∀θ ∈ Θd. (5)

Unfortunately, as recalled hereinafter, if Θd contains a non empty interval of R, then the norm minimization problem
(5) leads to an integral equation (9a) with no analytical solution in general. Therefore, since the seminal work of
Barankin [11], many studies quoted in [22][23][24][53] have been dedicated to the derivation of “computable” LBs
approximating the MSE of the locally-best unbiased estimator, which defines the Barankin bound (BB). All these
approximations derive from sets of discrete or integral linear transform of the ”Barankin” constraint (4b) and can
be easily obtained (see next Section) using the following well known norm minimization lemma [54]. Let U be
an Euclidean vector space on the field of real numbers R which has a scalar product ⟨ | ⟩. Let (c1, . . . , cK) be a
family of K linearly independent vectors of U and v ∈ RK . The problem of the minimization of ∥u∥2 under the
K linear constraints ⟨u | ck⟩ = vk, k ∈ [1,K] then has the solution:

min
{
∥u∥2

}
= ∥uopt∥2 = vTG−1v, (6)

uopt =

K∑
k=1

αkck, α = G−1v, Gk′,k = ⟨ck | ck′⟩ .

B. Lower Bounds via linear transformations of the McAulay-Seidman bound

The McAulay-Seidman bound (MSB) is the BB approximation obtained from a discretization of the Barankin
unbiasedness constraint (4b). Let θN =

(
θ1, . . . , θN

)T ∈ ΘN
d be a vector of N selected values of the parameter θ

(aka test points), υθ0

(
x;θN

)
=
(
υθ0

(
x; θ1

)
, . . . , υθ0

(
x; θN

))T
be the vector of LRs associated to θN , ξ (θ) =

θ − θ0 and ξ
(
θN
)
=
(
ξ
(
θ1
)
, . . . , ξ

(
θN
))T

. Then, any unbiased estimator θ̂0 ∈ L2 (SX ) verifying (4b) must
comply with the following subset of N linear constraints:

Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
= ξ

(
θN
)
, (7a)

yielding, via the norm minimization lemma (6), the MSB [17]:

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R−1
υθ0
ξ
(
θN
)
,
(
Rυθ0

)
n,m

= Ex;θ0 [υθ0 (x; θm) υθ0 (x; θn)] , (7b)

which is a generalization of the Hammersley-Chapman-Robbins bound (HaCRB) previously introduced in [12] and
[13] for 2 test points (N = 2). Obviously, any given set of K (K ≤ N) linear transformations of (7a):

Ex;θ0

[(
θ̂0 (x)− θ0

)
HT

Kυθ0

(
x;θN

)]
= HT

Kξ
(
θN
)
, HK = [h1, . . . ,hK ] , hk ∈ RN , 1 ≤ k ≤ K, (8a)

where HK has a full rank, provides, via the norm minimization lemma (6), another LB on the MSE:

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R†
HK
ξ
(
θN
)
, R†

HK
= HK

(
HT

KRυθ0
HK

)−1
HT

K . (8b)

It is worth noting that, for a given vector of test points θN , the LB (8b) reaches its maximum if, and only if, the
matrix HK is invertible (K = N) [17][55, Lemma 3], which represents a bijective transformation of the set of
constraints associated with the MSB (7a). Thus:

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R−1
υθ0
ξ
(
θN
)
≥ ξ

(
θN
)T

R†
HK
ξ
(
θN
)
.

The BB [11, Theorem 4] is obtained by taking the supremum of (8b) over all the existing degrees of freedom(
N,θN ,K,HK

)
. All known LBs on the MSE deriving from the BB can be obtained with appropriate instantiations
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of (8b), that is with appropriate linear transformations of the MSB5 (7b). For example, under mild regularity
conditions on p (x; θ), the CRB is the limiting form of the HaCRB, that is the MSB where N = 2, θ2 =(
θ0, θ0 + dθ

)T and dθ → 0 [11][12][13][17][55]. More generally, appropriate linear transformations of the MSB
(8a-8b) for finite values of N and K lead to the Fraser-Gutman bound (FGB ) [14], the Bhattacharyya bound
(BaB) [10], the McAulay-Hofstetter bound (MHB), the Glave bound (GlB) [20], and the Abel bound (AbB) [22].
Furthermore, the class of LBs introduced lately in [24] can also be obtained as linear transformations of the MSB
(8a-8b) in the limiting case where N,K → ∞. It suffices to define each hk as a vector of samples of a parametric
function h (τ , θ), τ ∈ Λ ⊂ R, integrable over Θd, ∀τ ∈ Λ, i.e., hT

k =
(
h
(
τk, θ

1
)
, . . . , h

(
τk, θ

N
))

, 1 ≤ k ≤ K. In
such a setting, one obtains the integral form of (8b) (see [25, Section 2] for details) released in [24, (34-36)]:

MSEθ0

[
θ̂0
]
≥ TTBh

θ0 =

∫
Λ

Γh
θ0 (τ)βhθ0 (τ) dτ, (9a)

where Γh
θ0 (τ) =

∫
Θd

h (τ , θ)
(
θ − θ0

)
dθ, and βhθ0 (τ) is the solution of the following integral equation:

Γh
θ0

(
τ ′
)
=

∫
Λ

Kh
θ0

(
τ ′, τ

)
βhθ0 (τ) dτ, (9b)

Kh
θ0

(
τ , τ ′

)
=

∫∫
Θ2

d

h (τ , θ)Rυθ0

(
θ, θ′

)
h
(
τ ′, θ′

)
dθdθ′, (9c)

Rυθ0

(
θ, θ′

)
= Ex;θ0

[
p (x; θ)

p
(
x; θ0

) p (x; θ′)
p
(
x; θ0

)] . (9d)

Note that if h (τ , θ) = δ (τ − θ) (limiting case of HN = IN where N = K → ∞) then Kh
θ0 (τ , τ ′) = Rυθ0

(τ , τ ′)
and (9a) becomes the expression of the BB [23, (10)][44, (6-7)]. As mentioned above, in most practical cases, it is
impossible to find an analytical solution of (9b) to obtain an explicit form of the TTBh

θ0 (9a), which somewhat limits
its interest. Nevertheless, as highlighted in [24], this formalism allows to use discrete or integral linear transforms
of the LR, possibly non-invertible, possibly optimized for a set of p.d.f. (such as the Fourier transform) in order to
get a tight approximation of the BB.

III. MODIFIED LOWER BOUNDS FOR NON-STANDARD ESTIMATION

In the previous Section II-B, we have pointed out that in standard estimation, the computability of the MSB
(7b) is the cornerstone to generate the class of LBs on the MSE of uniformly unbiased estimate deriving from
Barankin’s work [11]. Therefore it seems sensible to check whether or not the MSB is computable in non-standard
estimation.

A. A new look at modified lower bounds

If SX ,Θr
, i.e., the support of p (x,θr; θ), is independent of θ, then:

Ex,θr;θ [g (x,θr)] = Ex,θr;θ
0 [g (x,θr) υθ0 (x,θr; θ)] , υθ0 (x,θr; θ) =

p (x,θr; θ)

p
(
x,θr; θ

0
) . (10)

Therefore, for any unbiased estimator θ̂0 ∈ L2 (SX ), (7a) can be reformulated as, ∀n ∈ [1, N ]:

θn − θ0 = Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0 (x; θn)

]
= Ex;θn

[
θ̂0 (x)− θ0

]
= Ex,θr;θ

n

[
θ̂0 (x)− θ0

]
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
υθ0 (x,θr; θ

n)
]
,

5Since there is a one-to-one correspondence between a LB and a set of linear constraints, in the following, a linear transformation of a
given LB actually refers to the LB obtained from a linear transformation of the corresponding set of linear constraints.
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that is in vector form:

ξ
(
θN
)
= Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr;θ

N
)]
, (11)

where
(
υθ0

(
x,θr; θ

1
)
, . . . , υθ0

(
x,θr; θ

N
))

= υT
θ0

(
x,θr;θ

N
)
. Additionally, since θ̂0 ∈ L2 (SX ), then:

Ex;θ0

[(
θ̂0 (x)− θ0

)2]
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)2]
. (12)

Therefore:

min
θ̂0∈L2(SX )

{
Ex;θ0

[(
θ̂0 (x)− θ0

)2]}
under ξ

(
θN
)
= Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
, (13a)

is equivalent to:

min
θ̂0∈L2(SX )

{
Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)2]}
under ξ

(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr;θ

N
)]
. (13b)

Note that the equivalence between (13a) and (13b) holds only if θ̂0 ∈ L2 (SX ). Unfortunately, since L2 (SX ) is a
subspace of L2 (SX ,Θr

), the solution of (13b) cannot be given by the minimum norm lemma (6) in general, since
the lemma provides a solution in L2 (SX ,Θr

), that is the solution of:

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under ξ

(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
υθ0

(
x,θr;θ

N
)]
,

(13c)
yielding the following modified MSB:

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R−1
υθ0
ξ
(
θN
)
,
(
Rυθ0

)
n,m

= Ex,θr;θ
0 [υθ0 (x,θr; θ

m) υθ0 (x,θr; θ
n)] , (14)

in the sense that it is a LB for unbiased estimates belonging to L2 (SX ,Θr
). One noteworthy point is that the

modified MSB (14) is obtained from the MSB (7b) by substituting Ex,θr;θ
0 [ ] for Ex;θ0 [ ] and υθ0

(
x,θr;θ

N
)

for υθ0

(
x;θN

)
. More generally, since (13a) and (13c) share a similar formulation, reasoning by analogy, one can

state that any approximation of the BB deriving from linear transformations of the set of constraints associated
with the MSB (8a-8b), has an analog formulation in non-standard estimation obtained by substituting Ex,θr;θ

0 [ ]

for Ex;θ0 [ ] and υθ0

(
x,θr;θ

N
)

for υθ0

(
x;θN

)
. Actually, this is obtained by substituting p (x,θr; θ) for p (x; θ)

in any approximation of the BB. This result holds whatever the prior p.d.f. depends or does not depend on the
deterministic parameters. In the end, we have simply embedded the search of the locally-best unbiased estimator
initially performed in the vector space L2 (SX ) (5) into a larger vector space containing L2 (SX ), namely L2 (SX ,Θr

),
where the search of the locally-best unbiased estimator is formulated as:

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under Ex,θr;θ

[
θ̂0 (x,θr)− θ0

]
= θ − θ0, ∀θ ∈ Θd. (15)

Indeed, if θ̂0 ∈ L2 (SX ) ⊂ L2 (SX ,Θr
), then (15) reduces to (5). From this perspective, it seems appropriate to refer

to these LBs for unbiased estimates belonging to L2 (SX ,Θr
) as modified LBs (MLBs) as it has been proposed

initially in [4] and [30] for the modified CRB. Since (13a) and (13b) are equivalent and L2 (SX ) ⊂ L2 (SX ,Θr
), it

follows naturally that the modified form of a LB is looser (lower or equal) than the standard form of the LB. This
highlights the trade-off associated with MLBs in non-standard estimation: computability at the possible expense of
tightness. However it is possible to increase the tightness of MLBs by adding constraints in order to restrict the
class of viable estimators θ̂0 ∈ L2 (SX ,Θr

) and therefore to increase the minimum norm obtained from (13c) as
shown hereinafter in Section III-B.
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1) Old and new modified lower bounds:

In the light of the above, the MCRB in vector parameter estimation θ is obtained directly from the CRB:

CRBθ = Ex;θ

[
∂ ln p (x;θ)

∂θ

∂ ln p (x;θ)

∂θT

]−1

→ MCRBθ = Ex,θr;θ

[
∂ ln p (x,θr;θ)

∂θ

∂ ln p (x,θr;θ)

∂θT

]−1

, (16)

and one can assert that CRBθ ≥ MCRBθ, without having to invoke neither the Jensen’s inequality [4] nor to
prove specific matrix inequality [30, (4)]. Furthermore, the MCRB expression (16) is still valid if the prior depends
on θ, which extends the historical results provided in [4] and [30] under the restrictive assumption of a prior
independent of θ. In the same way, the MBaB of order K is obtained from the BaB [10][44, (19)]:∣∣∣∣∣∣∣

BaBθ = eT1Ex;θ

[
ϱ (x; θ)ϱ (x; θ)T

]−1
e1,

ϱ (x; θ)T = 1
p(x;θ)

(
∂p(x;θ)

∂θ , . . . , ∂
Kp(x;θ)
∂Kθ

) →

∣∣∣∣∣∣∣
MBaBθ = eT1Ex,θr;θ

[
ϱ (x,θr; θ)ϱ (x,θr; θ)

T
]−1

e1,

ϱ (x,θr; θ)
T = 1

p(x,θr;θ)

(
∂p(x,θr;θ)

∂θ , . . . , ∂
Kp(x,θr;θ)

∂Kθ

)
,

where eT1 = (1, 0, . . . , 0). Therefore, with the proposed approach, we not only extend the result introduced in [34,
(4)] under the restrictive assumption of a prior independent of θ, but we can also assert that BaBθ ≥ MBaBθ,
which has not been proven in [34].
As with the CRB and the BaB, the modified form of all remaining BB approximations released in the open literature,
namely the FGB [14], the MHB [19], the GlB [20], the AbB [22], and the CRFB [24, (101-102)], can be easily
obtained with the proposed framework. For instance, the modified form of the general class of LBs (9a-9d) proposed
in [24, (34-36)] is obtained simply by updating the definition of Rυθ0

(
θ, θ′

)
(9d) as follows:

Rυθ0

(
θ, θ′

)
= Ex,θr;θ

0

[
p (x,θr; θ)

p
(
x,θr; θ

0
) p (x,θr; θ′)
p
(
x,θr; θ

0
)] , (17)

and one can also assert that TTBh
θ0 ≥MTTBh

θ0 .

B. A general class of tighter modified lower bounds and its relationship with hybrid lower bounds

As mentioned above, it is possible to increase the tightness of MLBs by adding constraints in order to restrict
the class of viable estimators θ̂0 ∈ L2 (SX ,Θr

) and therefore to increase the minimum norm obtained from (13c).
However, such additional constraints must keep on defining a subset of L2 (SX ,Θr

) including the set of unbiased
estimates belonging to L2 (SX ), as shown in the following with two general subsets of additional constraints. The
first subset can be related to historical works on hybrid LBs [3][29] but addressed in a different way. The second
subset is a generalization of [46, (8)] reformulated according to the proposed framework.

1) A first class of tighter modified lower bounds:

Since:

p (x; θ) =

∫
SΘr|x

p (x,θr; θ) dθr

=

∫
RPr

p (x,θr; θ) 1SΘr|x (θr) dθr,

then, after change of variables θr = θ′r + hr and renaming θ′r as θr:

p (x; θ) =

∫
RPr

p (x,θr + hr; θ) 1SΘr|x (θr + hr) dθr.

Therefore for any hr such that:

1SΘr|x (θr + hr) = 1SΘr|x (θr) , ∀θr ∈ RPr , (18a)
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then:
p (x; θ) =

∫
SΘr|x

p (x,θr + hr; θ) dθr, (18b)

and for any unbiased estimator θ̂0 ∈ L2 (SX ), (7a) can be reformulated as, ∀n ∈ [1, N ]

θn − θ0 = Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0 (x; θn)

]
=

∫
SX

(
θ̂0 (x)− θ0

)
p (x; θn) dx

=

∫
SX

(
θ̂0 (x)− θ0

) ∫
SΘr|x

p (x,θr + hr; θ
n) dθrdx

= Ex,θr;θ
0

[(
θ̂0 (x)− θ0

)
υθ0 (x,θr + hr; θ

n)
]
,

that is in vector form:

ξ
(
θN
)
= Ex;θ0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr + hr;θ

N
)]
.

(19)

The identity (19) means that for any θ̂0 ∈ L2 (SX ), the two subsets of N constraints are equivalent system of linear
equations yielding the same vector subspace of L2 (SX ): span

(
υθ0

(
x; θ1

)
, . . . , υθ0

(
x; θN

))
. Therefore, for any

θ̂0 ∈ L2 (SX ), any set of N ×K constraints of the form:

ξ
(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
υθ0

(
x,θr + hk

r ;θ
N
)]
, (20)

where
{
h1
r, . . . ,h

K
r

}
satisfy (18a), is equivalent to the set of N constraints (11). Fortunately this result does not

hold a priori for all θ̂0 ∈ L2 (SX ,Θr
) where the N ×K constraints (20) are expected to be linearly independent

(not necessarily true in the general case). As mentioned above, the main effect of adding constraints is to restrict
the class of viable estimators θ̂0 ∈ L2 (SX ,Θr

) and therefore to increase the minimum norm obtained from (6):

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under ξ

(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
υθ0

(
x,θr + hk

r ;θ
N
)]
,

(21)
1 ≤ k ≤ K, which remains smaller (or equal) than the minimum norm obtained for θ̂0 ∈ L2 (SX ) given by (13a).
This LB ordering was previously introduced in [29, (29)], but only in the restricted case where the prior does not
depend on the deterministic parameter and SΘr|x = RPr , at the expense of a not straightforward derivation (see
Subsections III.C and III.D in [29]). Note that the regularity condition (18a) only imposes on 1SΘr|x (θr), x ∈ SX ,
to be of the following form:

1SΘr|x (θr) =

∣∣∣∣∣∣∣
0 if

∑
hr∈Fx

(∑
l∈Z

1S0
Θr|x

(θr + lhr)

)
= 0,

1, otherwise,
(22)

where Fx and S0
Θr|x are subsets of RPr , what means that the complementary of SΘr|x is the union (possibly

uncountable) of periodic subsets of RPr .
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2) A second class of tighter modified lower bounds:

Let us recall that any real-valued function ψ (x,θr; θ) defined on SX ,Θr
satisfying∫

SΘr|x

ψ (x,θr; θ) p (x,θr; θ) dθr = 0, (23)

is a Bayesian LB-generating functions [56]. A well known example is, for γ ∈]0, 1[:

ψhr
γ (x,θr; θ) = (p (x,θr + hr; θ) /p (x,θr; θ))

γ − (p (x,θr − hr; θ) /p (x,θr; θ))
1−γ , (24)

if (x,θr) ∈ SX ,Θr
, and ψhr

γ (x,θr; θ) = 0 otherwise, yielding the Bayesian Weiss-Weinstein bound (BWWB). Let
ψ (x,θr; θ) be a vector of L linearly independent functions satisfying (23). Then ∀g (.) ∈ L2 (SX ):

Ex,θr;θ
0

[
g (x)ψ

(
x,θr; θ

0
)]

= 0, (25a)

which means that the subspace L2 (SX ) is orthogonal to span
{
ψ1

(
x,θr; θ

0
)
, . . . , ψL

(
x,θr; θ

0
)}

in L2 (SX ,Θr
).

Therefore, since (13a) can be reformulated as (13b), it is straightforward that (13a) is equivalent to:

min
θ̂0∈L2(SX )

{
Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)2]}
under

∣∣∣∣∣∣
ξ
(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
υθ0

(
x;θN

)]
0 = Ex,θr;θ

0

[(
θ̂0 (x)− θ0

)
ψ
(
x,θr; θ

0
)] . (25b)

In other words, the addition of the set of L constraints Ex,θr;θ
0

[(
θ̂0 (x)− θ0

)
ψ
(
x,θr; θ

0
)]

= 0 to any linear

transformation of (7a) does not change the associated LB (8b) computed for θ̂0 ∈ L2 (SX ). Fortunately, once again,
this result does not hold a priori for all θ̂0 ∈ L2 (SX ,Θr

). Indeed, provided that ψ (x,θr; θ) is chosen such that
Ex,θr;θ

0

[
υθ0

(
x,θr;θ

N
)
ψ
(
x,θr; θ

0
)T ] ̸= 0 [55, Lemma 2], one can increase the minimum norm obtained from

(13c) by computing:

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under

∣∣∣∣∣∣
ξ
(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
υθ0

(
x,θr;θ

N
)]

0 = Ex,θr;θ
0

[(
θ̂0 (x,θr)− θ0

)
ψ
(
x,θr; θ

0
)] ,

(26)
which remains smaller (or equal) than the minimum norm obtained for θ̂0 ∈ L2 (SX ) given by (13a). First note
that it is in general not possible to compare (21) with (26) since they derive from different subset of constraints.
Second, (26) can be used with joint p.d.f. p (x,θr; θ) which does not satisfy the regularity condition (22) since
functions (24) are essentially free of regularity conditions [56].

3) A general class of tighter modified lower bounds and its relationship with hybrid lower bounds:

The tightest modified LBs are obtained by combination of constraints (21) and (26) as the solution of:

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under

∣∣∣∣∣∣
ξ
(
θN
)
= Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
υθ0

(
x,θr + hk

r ;θ
N
)]

0 = Ex,θr;θ
0

[(
θ̂0 (x,θr)− θ0

)
ψ
(
x,θr; θ

0
)]
,

(27)
1 ≤ k ≤ K, where ψ

(
x,θr; θ

0
)

satisfies (23).
Firstly, if we restrict (27) to (21), that is no function ψ

(
x,θr; θ

0
)

(23) is involved, then the solution of (21)(27)
given by the minimum norm lemma (6) yields the deterministic part of the HLBs obtained as discrete forms [45,
(30)] of linear transformations on the CLR function introduced in [45]. Following from similar argument given in
Section II-B or in [46, Section III], one obtains the deterministic part of the HLB integral form proposed in [45],
as linear transformations of (21) in the limiting case where N,K → ∞. Note that in [45] two restrictive regularity
conditions are assumed: i) SΘr|x = RPr , ii) the prior does not depend on θ, which are relaxed with the proposed
framework: HLBs obtained via linear transformations on the CLR function are still valid if the prior depends on θ
as long as SΘr|x satisfies (22), which includes RPr . In contrast, according to (22) such bounds do not exist if SΘr|x
is a connected set of RPr and in most cases, if SΘr|x is a disconnected subset of RPr (not stated in [45]). Last,
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since the modified LB obtained from (21) is lower than or equal to the standard LB from (13a), one can assert that
the deterministic part of any HLB obtained via the linear transformation on the CLR is looser (or equal) than the
corresponding standard LB (not proven in [45]).

Secondly, if SΘr|x does not satisfy (22), e.g., if SΘr|x is an interval, then (21) can no longer be used to increase
the minimum norm obtained from (13c). One solution is therefore to restrict (27) to (26) and, following from
similar argument given in Section II-B, to resort to some of its possible integral forms obtained as the limiting
cases where N,K → ∞, where L has a finite value:

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under

∣∣∣∣∣∣
Γh
θ0 (τ) = Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
ηh
θ0 (x,θr; τ)

]
0 = Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
ψ
(
x,θr; θ

0
)]
,

(28a)

where ηh
θ0 (x,θr; τ) =

∫
Θd

h (τ , θ) υθ0 (x,θr; θ) dθ and Γh
θ0 (τ) =

∫
Θd

h (τ , θ)
(
θ − θ0

)
dθ, or where L → ∞, if we

choose (24):

min
θ̂0∈L2(SX ,Θr )

{
Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)2]}
under

∣∣∣∣∣∣
Γh
θ0 (τ) = Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
ηh
θ0 (x,θr; τ)

]
0 = Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
κ
(
x,θr; θ

0
)]
,

(28b)
where κ

(
x,θr; θ

0
)
=
∫∫
γ,hr

ψhr
γ

(
x,θr; θ

0
)
dhrdγ. To the best of our knowledge, (28b) defines a new class of MLBs,

whereas (28a) is a particular case of the deterministic part of HLBs introduced in [46].
Thirdly, if we restrict ourselves to the case where SΘr|x = RPr , then (27) and its possible integral forms provide

an extended class of MLBs which can be regarded as the deterministic part of an extended class of HLBs which
includes all known HLBs introduced so far as shown in [45] and [46].
It is noteworthy that the proposed unified framework allows to reformulate all known LBs on the MSE for unbiased
estimates in non-standard estimation as a MLBs without any regularity condition on the (nuisance) random vector
estimates, since θr is neither required nor expected to be estimated. Moreover, since any modified LB obtained
from (27) is lower than or equal to its standard form (13a), one can assert that the deterministic part of any HLB
is looser (or equal) than the corresponding standard LB, which is a new general result. Last, the deterministic part
of any HLB is a valid MLBs whatever the prior depends on or does not depend on the deterministic parameter θ,
which is another new general result.

4) Old and new tighter modified lower bounds:

A typical example is the case of the CRB. A tighter MCRB obtained from (21) for N = 2, K = Pr, where
θ2 =

(
θ0 + dθ, θ0

)
and hk

r = ukh
k
r , 1 ≤ k ≤ Pr, leading to the following subset of constraints:

v = dθ

(
0

e1

)
= Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
cθ0 (x,θr)

]
,

cTθ0 (x,θr) =
(
υθ0

(
x,θr; θ

0
)
, υθ0

(
x,θr; θ

0 + dθ
)
, υθ0

(
x,θr + u1h

1
r; θ

0
)
, . . . , υθ0

(
x,θr + uPr

hPr
r ; θ0

))
where e1 = (1, 0, . . . , 0)T and uk is the kth column of the identity matrix IPr

. By letting
(
dθ, h1r, . . . , h

Pr
r

)
be

infinitesimally small, which imposes that (22) reduces to: ∀x ∈ SX , SΘr|x = RPr , the LB obtained from (6) is:

MCRBθ0 = eT1 F
(
θ0
)−1

e1, F (θ) = Ex,θr;θ

[
∂ ln p (x,θr; θ)

∂
(
θ,θTr

)T ∂ ln p (x,θr; θ)

∂
(
θ,θTr

) ]
. (29)

Since F (θ) =

[
fθ (θ) fTθr,θ

(θ)

fθr,θ (θ) Fθr
(θ)

]
, therefore:

MCRBθ0 =
1

fθ
(
θ0
)
− fTθr,θ

(
θ0
)
F−1
θr

(
θ0
)
fθ,θr

(
θ0
) ≥ 1

fθ
(
θ0
) =MCRBθ0 . (30)

Actually (29) is also the deterministic part of the HCRB [3] and a similar derivation was proposed in [29], but under
the unnecessary restrictive assumption of a prior independent of θ, as in [3] which introduced the HCRB as an
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extension of the Bayesian CRB proposed in [1]. This condition was relaxed in [28, (20)] with sufficient conditions
[28, (21)] unnecessary restrictive and which have been an impediment to the dissemination of their result. However
if SΘr|x is an interval of RPr , then the tighter MCRB (29) cannot be derived any longer. Fortunately, as shown
with the proposed rationale, an alternative tighter MCRB can be derived from (26). Indeed, for N = 2, where
θ2 =

(
θ0 + dθ, θ0

)
, the following subset of constraints:

v = dθ

(
0

e1

)
= Ex,θr;θ

0

[(
θ̂0 (x,θr)− θ0

)
cθ0 (x,θr)

]
,

cTθ0 (x,θr) =
(
υθ0

(
x,θr; θ

0
)
, υθ0

(
x,θr; θ

0 + dθ
)
,ψ
(
x,θr; θ

0
)T)

yields, as a limiting form where dθ → 0, via Lemma (6):

MCRB
a
θ0 = eT1Ex,θr;θ

0

( ∂ ln p(x,θr;θ)
∂θ

ψ (x,θr; θ)

)( ∂ ln p(x,θr;θ)
∂θ

ψ (x,θr; θ)

)T
−1

e1,

that is:
MCRB

a
θ0 =

1

fθ
(
θ0
)
− f

(
θ0
)
F
(
θ0
)−1

f
(
θ0
) ≥ 1

fθ
(
θ0
) =MCRBθ0 ,

where F (θ) = Ex,θr;θ

[
ψ (x,θr; θ)ψ (x,θr; θ)

T
]
, f (θ) = Ex,θr;θ

[
ψ (x,θr; θ)

∂ ln p(x,θr;θ)
∂θ

]
and

fθ (θ) = Ex,θr;θ

[(
∂ ln p(x,θr;θ)

∂θ

)2]
. In the same way, one could easily proposed an alternative to the tighter MBaB

of order K deriving from (21), suitable to estimation problems for which SΘr|x does not satisfy (22). Or for the
modified form of any known standard LB.

C. On closeness, tightness, regularity conditions and implementation of modified lower bounds

1) On the closeness of MLBs to LBs:

Actually, a ”closeness condition” required to obtain a modified LB equal to the standard LB is quite simple to
express: it is necessary, and sufficient, that the estimator solution of the norm minimization under linear constraints
(13c)(21)(26)(27) belongs to L2 (SX ), that is according to (6):

θ̂0 (x,θr)opt − θ0 =

K∑
k=1

αk (cθ0 (x,θr))k ∈ L2 (SX ) , (31)

a closeness condition fulfilled by a class of joint p.d.f. p (x,θr; θ) which depends on the vector of constraint
functions chosen. For example, if we consider the MCRBθ0 (29) then the tightness condition is:

θ̂ (x,θr)opt − θ =
∂ ln p (x,θr; θ)

∂
(
θ,θTr

) α (θ) = θ̂ (x)opt − θ. (32)

Since eT1 F (θ)−1 =MCRBθ

(
1,−F−1

θr
fθr,θ (θ)

)
, therefore (32) is equivalent to:

∂ ln p (x,θr; θ)

∂θ
− fθ,θr

(θ)F−1
θr

(θ)
∂ ln p (x,θr; θ)

∂θr
=
θ̂ (x)opt − θ

MCRBθ

,

leading to the necessary, and sufficient, condition:

∂ ln p (x,θr; θ)

∂θ∂θTr
= fθ,θr

(θ)F−1
θr

(θ)
∂ ln p (x,θr; θ)

∂θr∂θ
T
r

, (33)

which has been introduced in [52, (34)] at the expense of a quite complex proof.
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2) On tightness, regularity conditions and implementation of MLBs:

As mentioned above, the trade-off associated with MLBs is computability at the possible expense of tightness.
Indeed, a key feature of the simplest form of the MLBs deriving from the MMSB (14), is to be essentially free of
regularity conditions both on the joint p.d.f. p (x,θr; θ) w.r.t the random parameters θr, and on the support SΘr|x.
This feature still holds for the tighter MLBs obtained with Bayesian LB-generating functions (26)(28a-28b). In
contrast, none of the existing HLBs, which are all obtained via linear transformations on the CLR function [45],
can be used if SΘr|x does not satisfy (22), that is, for instance, if SΘr|x is a connected set of RPr and in most cases,
if SΘr|x is a disconnected subset of RPr . Off course, any time an existing HLB can be derived, its deterministic
part provides a tighter LB than the corresponding MLB deriving from (14), however at the expense of an increased
computational cost (see (29)). Thus, the proposed unified framework is a useful tool to look for the best possible
trade-off between tightness, regularity conditions and computational cost, in the choice of a MLB for a given
non-standard estimation problem. In that perspective, non-standard estimation can take advantage of the works on
computable approximations of the BB in standard estimation [22][23][24], which have shown that the CRB and the
BB can be regarded as key representatives of two general classes of bounds, respectively the Small-Error bounds and
the Large-Error bounds. Indeed, it is now well known that the Small-Error bounds, such as the CRB, are optimistic
bounds in a non-linear estimation problem where the outliers effect generally appears [57][58][59]. This outliers
effect leads to a characteristic threshold behavior of estimators MSE which exhibits a “performance breakdown”
highlighted by Large-Error bounds [17]. Furthermore, it has been underlined that under the norm minimization
approach, the Small Error bounds derive from linear constraints expressed at the true value θ0 only, whereas the
Large-Error bounds derive from linear constraints expressed at vectors of test points θN+1 including the true value
[17][20][22][23][24]. The tightness of a given Large Error bound is at the expense of some computational cost;
indeed as its tightness depends on the used vector of test points [24][60], it generally incorporates the search of an
optimum over a set of vectors of test points. As a consequence, the final practical form proposed by each author
is an attempt to optimize the trade-off between tightness and computational cost. For example, in [17] the main
goal was to reduce the complexity of use of the BB by substituting the simplified form (7b) for the initial form
(8b). In [19] and generalized in [20] and [22], the rationale is to combine a Small Error bound (CRB [19][20] or
BaB [22]) with a Large Error bound (MSB [17]) in order to obtain a bound which accounts for both local and
large errors and is able to handle the threshold phenomena. Indeed the use of derivatives is also helpful to decrease
the computational burden since it allows to resort to smaller sets of tests point vectors to achieve similar tightness
[22][24], however at the expense of the existence of the derivatives (although this condition is mild and generally
satisfied). Last, the norm minimization approach naturally incorporates possible tightness comparison between two
MLBs. Indeed, if the subset of linear constraints associated with a MLB is included into the subset of linear
constraints associated with another MLB, then the latter one is tighter. To wrap up, when looking at a MLB, the
following questions should be answered: i) is the strong regularity condition (22) satisfied?, e.g., is SΘr|x , RPr?,
ii) is the joint p.d.f. p (x,θr;θ) differentiable w.r.t the random parameters? iii) which regions of operation of
estimators, among the asymptotic region, the threshold region and the a priori region [58], are of interest?, iv) are
analytic forms of Ex,θr;θ

0

[
ψ
(
x,θr; θ

0
)
υT
θ0

(
x,θr;θ

N
)]

and Ex,θr;θ
0

[
ψ
(
x,θr; θ

0
)
ψ
(
x,θr; θ

0
)T ] available? For

instance, if the asymptotic and threshold regions are of interest, and if the answers to i), ii), iv) are positive, then
at the expense of non negligible computational burden, the tightest MLBs will be probably obtained by deriving
from (27) a combination of the tight version of the modified GlB (or of the modified CRFB) with Bayesian LB-
generating functions (23), since the MLB obtained will incorporate most of the meaningful constraints available.
If the asymptotic and threshold regions are of interest, and if the answers to i), ii), iv) are negative, then at the
expense of a non negligible computational burden, the tightest MLBs is the MMSB (14).

IV. NON-STANDARD MAXIMUM LIKELIHOOD ESTIMATOR FOR DETERMINISTIC ESTIMATION

Let us recall that the widespread use of MLEs in deterministic estimation originates from the fact that, under
reasonably general conditions on the observation model [8][61], the MLEs are asymptotically uniformly unbiased,
Gaussian distributed and efficient when the number of independent observations tends to infinity. Additionally, if the
observation model is Gaussian complex circular, some additional asymptotic regions of operation yielding uniformly
unbiased Gaussian and efficient MLEs have also been identified at finite number of independent observations
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[62][63][64][65][66]. If a closed-form of p (x; θ) does not exist or if a closed-form of p (x; θ) does exist but the
resulting expression is intractable to derive the standard MLE of θ:

θ̂ML (x) = argmax
θ∈Θd

{p (x; θ)} , (34a)

a sensible solution in the search of a realizable estimator based on the ML principle is to look for:(
θ̂r (x) , θ̂ (x)

)
= arg max

θ∈Θd,θr∈SΘr|x
{p (x|θr; θ)} . (34b)

In the following θ̂ (x) and θ̂r (x) (34b) are referred to as ”non-standard” MLEs (NSMLEs). The underlying idea
is that, since in many estimation problems [1][2][3][4] p (x,θr; θ) is a compound probability distribution, i.e.,
p (x,θr; θ) = p (x|θr; θ) p (θr; θ), the closed-form of p (x|θr; θ) is known and the NSMLEs (34b) take advantage not
only of the aforementioned properties, and in particular of the asymptotic uniform unbiasedeness w.r.t. p (x|θr; θ),
but also of the extensive open literature on MLE closed-form expressions or approximations [47]. These key features
clearly make the ”non-standard” maximum likelihood estimation more attractive than the two known following
alternative approaches. The first alternative approach consists in deriving the joint maximum a posteriori-maximum
likelihood estimate (JMAPMLE) of the hybrid parameter vector

(
θTr , θ

)
:(

θ̂rJ (x) , θ̂J (x)
)
= arg max

θ∈Θd,θr∈SΘr|x
{p (x,θr; θ)} , (35)

but suffers from a major drawback: the JMAPMLE is biased and inconsistent whatever the number of independent
observations [48], except for a class of hybrid estimation problems yielding (34b) when the number of independent
observations tends to infinity [50, p. 6, 12]. One point worthy of note is that the JMAPMLE may outperform the MLE
(34a) in terms of MSE, especially with short data records, where MLE is indeed disarmed of its asymptotic optimality
[48]. However the biasedness of the JMAPMLE prevents from the comparison of its MSE with deterministic LBs.
Indeed, if any known bias can be taken into account in deterministic LBs formulation [11], the bias depends on
the specific estimator and, furthermore, is hardly ever known in practice. The second alternative approach consists
in resorting to the expectation-maximization (EM) algorithm [49]. In the general case the EM algorithm converges
to a stationary point of ln p (x; θ). The stationary point need not, however, be a local maximum. Indeed, if it is
shown that, under suitable regularity conditions [67], it converges to the MLE (34a), it is also shown [68] that it is
possible for the algorithm to converge to local minima or saddle points in unusual cases. Moreover, in non-standard
estimation, the EM algorithm consists in the following iterative procedure:

θn+1 = argmax
θ∈Θd

{
Eθr|x;θn

[ln p (x,θr; θ)]
}
, (36)

which is unlikely to be of practical use in many estimation problems of interest where p (θr; θ) is not a conjugate
prior for the likelihood function p (x|θr; θ) and p (θr|x; θ) is not computable. Last, in any case where the EM
algorithm converge to the MLE (34a), its MSE is lower bounded by the MLBs.

A. Performance comparison

For that purpose, let us denote ϕ =
(
θ,θTr

)T ∈ Θd×RPr , p (x|ϕ) , p (x|θr; θ) and Ex|ϕ [ ] , Ex|θr;θ [ ]. Then

any estimator ϕ̂
T
=
(
θ̂, θ̂

T

r

)
∈ L2 (SX ,Θr

), i.e., ϕ̂ , ϕ̂ (x,θr), of a selected vector value ϕ6 uniformly strict-sense
unbiased [52], i.e., w.r.t. p (x|ϕ), must comply with:

∀ϕ′ =

(
θ′

θ′r

)
∈ Θd × RPr : Ex|ϕ′

[
ϕ̂
]
= ϕ′, (37)

which implies that:

∀θ′ ∈ Θd : Ex,θ′
r;θ

′

[
ϕ̂
]
= Eθ′

r;θ
′
[
ϕ′] = ( θ′

Eθ′
r;θ

′
[
θ′r
]), (38)

6In this section, for sake of legibility, ψ denotes either the vector of unknown parameters or a selected vector value ψ , ψ0
=(

θ0,
(
θ0r

)T)T

.
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that is ϕ̂ ∈ L2 (SX ,Θr
) is a uniformly wide-sense unbiased7 [52] estimate of g (θ)T =

(
θ,Eθr;θ

[
θTr
])

, i.e., w.r.t.
p (x,θr; θ). As the reciprocal is not true:

∀θ′ ∈ Θd : Ex,θ′
r;θ

′

[
ϕ̂− ϕ′

]
= 0 ; ∀ϕ′ ∈ Θd × RPr : Ex|ϕ′

[
ϕ̂− ϕ′

]
= 0,

then US (SX ,Θr
) =

{
ϕ̂ ∈ L2 (SX ,Θr

) verifying (37)
}

⊂ UW (SX ,Θr
) =

{
ϕ̂ ∈ L2 (SX ,Θr

) verifying (38)
}

8. Let

US (SX ) and UW (SX ) denote the restriction to L2 (SX ) of US (SX ,Θr
) and UW (SX ,Θr

). First, ∀ϕ̂ ∈ L2 (SX ,Θr
):

Ex,θr;θ

[(
ϕ̂− g (θ)

)(
ϕ̂− g (θ)

)T]
= Ex,θr;θ

[(
ϕ̂− Ex|ϕ

[
ϕ̂
])(

ϕ̂− Ex|ϕ

[
ϕ̂
])T]

+

Eθr;θ

[(
Ex|ϕ

[
ϕ̂
]
− g (θ)

)(
Ex|ϕ

[
ϕ̂
]
− g (θ)

)T]
. (39a)

Therefore, if ϕ̂ ∈ US (SX ,Θr
):

Ex,θr;θ

[(
ϕ̂− g (θ)

)(
ϕ̂− g (θ)

)T]
= Ex,θr;θ

[(
ϕ̂− ϕ

)(
ϕ̂− ϕ

)T]
+Cθ (ϕ) , (39b)

where:
Cθ (ϕ) = Eθr;θ

[
(ϕ− Eθr;θ [ϕ]) (ϕ− Eθr;θ [ϕ])

T
]
=

[
0 0T

0 Cθ (θr)

]
.

Second, as US (SX ) ⊂ UW (SX ) and US (SX ) ⊂ US (SX ,Θr
) and, finally:

min
ϕ̂∈UW (SX )

{
Ex|θ

[(
ϕ̂− g (θ)

)(
ϕ̂− g (θ)

)T]}
≤ min

ϕ̂∈US(SX )

{
Ex,θr;θ

[(
ϕ̂− ϕ

)(
ϕ̂− ϕ

)T]}
+Cθ (ϕ) , (40a)

and, in particular:

min
θ̂∈UW (SX )

{
Ex|θ

[(
θ̂ − θ

)2]}
≤ min

θ̂∈US(SX )

{
Ex|θ

[(
θ̂ − θ

)2]}
. (40b)

If we consider an asymptotic region of operation [8][61][62][63][64][65][66] for both θ̂ML (x) and θ̂ (x), then
θ̂ML (x) is wide-sense unbiased, i.e., θ̂ML ∈ UW (SX ), θ̂ (x) is strict-sense unbiased, i.e., θ̂ ∈ US (SX ), and (40b)
holds for θ̂ML and θ̂. Thus, the NSMLEs of θ is in general an asymptotically suboptimal estimator of θ (in the MSE
sense) in comparison with the MLE of θ within the set of unbiased estimates in the Barankin sense (4a). Therefore,
from a theoretical as well as a practical point of view, it is of interest to investigate on a possible quantification of
the suboptimality of the NSMLE, which can be obtained in some extent by LBs derivation and comparison.

B. Non-standard lower bounds

For any ϕ̂ ∈ US (SX ,Θr
), let Cϕ

(
ϕ̂
)
= Ex|ϕ

[(
ϕ̂− ϕ

)(
ϕ̂− ϕ

)T]
denotes its covariance matrix w.r.t. p (x|ϕ).

Then by noticing that, ∀ϕ̂ ∈ US (SX ,Θr
):

Ex,θr;θ

[(
ϕ̂− ϕ

)(
ϕ̂− ϕ

)T]
= Eθr;θ

[
Cϕ

(
ϕ̂
)]
, (41)

one can derive LBs on the MSE of NSMLEs as follows. Firstly, the rationale outlined in Sections II-B and III-A
is generalizable to vector parameter [17][23], that is any LB on Cϕ

(
ϕ̂
)

, ϕ̂ ∈ US (SX ), can be expressed as linear
transformations of the ad hoc form of the MSB, that is in the present case, w.r.t. to p (x|ϕ) and for strict-sense
unbiased estimates (37) satisfying:

Ex|ϕ

[(
ϕ̂− ϕ

)
υT
ϕ

(
ΦN
)]

= Ξ
(
ΦN
)
, (42a)

7Regarding the deterministic parameter θ, uniform wide-sense unbiasedeness is another name for unbiasedeness in the Barankin sense
(4a).

8In most cases, the inclusion is strict leading to strict inequalities (40a-45a)
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where ΦN =
[
ϕ1 . . . ϕN

]
, Ξ
(
ΦN
)
=
[
ϕ1 − ϕ . . . ϕN − ϕ

]
,

υϕ

(
ΦN
)
, υϕ

(
x;ΦN

)
=
(
υϕ
(
x;ϕ1

)
, . . . , υϕ

(
x;ϕN

))T
and υϕ

(
x;ϕ′) = p

(
x|ϕ′) /p (x|ϕ). By resorting to

the generalization of (6) to a vector of estimators [23, Lemma 1], the solution of:

min
ϕ̂∈US(SX )

{
Cϕ

(
ϕ̂
)}

under Ex|ϕ

[(
ϕ̂− ϕ

)
υT
ϕ

(
ΦN
)]

= Ξ
(
ΦN
)
, (42b)

is given by:

Cϕ

(
ϕ̂MSB

)
= Ξ

(
ΦN
)
R−1

υϕ

(
ΦN
)
Ξ
(
ΦN
)T
, ϕ̂MSB = Ξ

(
ΦN
)
R−1

υϕ

(
ΦN
)
υϕ

(
x;ΦN

)
, (42c)

where Rυϕ

(
ΦN
)
= Ex|ϕ

[
υϕ

(
ΦN
)
υT
ϕ

(
ΦN
)]

. Therefore:

Cϕ

(
ϕ̂MSB

)
≤ min

ϕ̂∈US(SX )

{
Cϕ

(
ϕ̂
)}

, (43a)

leading to (41):

Eθr;θ

[
Cϕ

(
ϕ̂MSB

)]
≤ min

ϕ̂∈US(SX )

{
Ex,θr;θ

[(
ϕ̂− ϕ

)(
ϕ̂− ϕ

)T]}
. (43b)

In any asymptotic region of operation of NSMLEs, since NSMLEs belong to US (SX ), then Eθr;θ

[
Cϕ

(
ϕ̂MSB

)]
is a LB on the covariance matrix of NSMLEs. Therefore it seems sensible to refer to Eθr;θ

[
Cϕ

(
ϕ̂MSB

)]
as a

non-standard MSB (NSMSB) to make the difference with the modified MSB (14). Indeed, the NSMSB is a LB
for ϕ̂ ∈ US (SX ), i.e., strict-sense unbiased estimates, whereas the MMSB is a LB for ϕ̂ ∈ UW (SX ,Θr

), i.e.,
wide-sense unbiased estimates (see Section III-A). In the same vein, any Barankin bound approximation (BBA) on
the MSE of MLEs resulting from a linear transformation of the MSB (7b), has a non-standard version, referred to
as NSBBA or as NSLB hereinafter, and defined as

NSBBA = Eθr;θ

[
Cϕ

(
ϕ̂BBA

)]
, (44)

where Cϕ

(
ϕ̂BBA

)
is the LB resulting from the same linear transformation of (42c). As well as the NSMSB,

any NSBBA lower bounds the MSE of NSMLEs in any asymptotic region of operation. Note that in general, the
NSLBs cannot be arranged in closed form due to the presence of the statistical expectation. They however can
be evaluated by numerical integration or Monte Carlo simulation [33]. It is then worth noticing that an equivalent
form of (40a) is:

min
ϕ̂∈UW (SX )

{
Ex|θ

[(
ϕ̂− g (θ)

)(
ϕ̂− g (θ)

)T]}
≤ min

ϕ̂∈US(SX )

{
Eθr;θ

[
Cϕ

(
ϕ̂
)]}

+Cθ (ϕ) . (45a)

Unfortunately, ϕ̂BBA /∈ US (SX ) and ϕ̂BBA /∈ UW (SX ,Θr
) in general, therefore no general result can be drawn

from (45a) on the ordering between NSBBA + Cθ (ϕ) and min
ϕ̂∈UW (SX )

{
Ex|θ

[(
ϕ̂− g (θ)

)(
ϕ̂− g (θ)

)T]}
, or

any BBA computed on UW (SX ).

C. Lower bounds comparison

If in general we cannot compare directly the performance of the NSMLEs and the MLEs, however since:

min
ϕ̂∈UW (SX ,Θr )

{
Ex,θr;θ

[(
ϕ̂− g (θ)

)(
ϕ̂− g (θ)

)T]}
≤ min

ϕ̂∈US(SX )

{
Ex,θr;θ

[(
ϕ̂− ϕ

)(
ϕ̂− ϕ

)T]}
+Cθ (ϕ) ,

we should be able to compare their associated LBs. Actually, some comparisons are possible but for a restricted
class of non-standard estimation problems, as shown in the following. Using the rationale outlined in Section III-A,
one can state that all MLBs on ϕ̂ ∈ UW (SX ,Θr

) derive from sets of discrete or integral linear transform of:

∀n ∈ [1, N ] , g (θn)− g (θ) = Ex,θr;θ

[(
ϕ̂ (x,θr)− g (θ)

)
υθ (x,θr; θ

n)
]
, (46)
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which can be rewritten as:

∀n ∈ [1, N ] , g (θn)− g (θ) = Eθr;θ
n [ϕ]− g (θ) + Eθr;θ

[
Ex|ϕ

[(
ϕ̂ (x,θr)− ϕ

)
υθ (x,θr; θ

n)
]]
,

and yields the general form of the MMSB for unbiased estimates of functions of θ:

MMSB = Ξ
(
θN
)
R−1

υθ

(
θN
)
Ξ
(
θN
)T
, (47)

where Ξ
(
θN
)
=
[
g
(
θ1
)
− g (θ) . . . g

(
θN
)
− g (θ)

]
and Rυθ

(
θN
)
= Ex,θr;θ

[
υθ

(
x,θr;θ

N
)
υT
θ

(
x,θr;θ

N
)]

.
If p (θr; θ) does not depend on θ, i.e. p (θr; θ) = p (θr), then:

Eθr;θ
′ [ϕ] = g (θ) , υθ

(
x,θr; θ

′) = p
(
x|θr; θ′

)
p (x|θr; θ)

,

and (46) becomes:

∀n ∈ [1, N ] , g (θn)− g (θ) = Eθr;θ

[
Ex|ϕ

[(
ϕ̂ (x,θr)− ϕ

)
υϕ (x;ϕn)

]]
, (48)

where ϕn =
(
θn,θTr

)T
, that is any ϕ̂ ∈ L2 (SX ,Θr

) satisfying (42a) also satisfies (46). Therefore, if p (θr; θ) does
not depend on θ, ϕ̂MSB in (42c) satisfies (46) and the following inequality:

Ξ
(
θN
)
R−1

υθ

(
θN
)
Ξ
(
θN
)T︸ ︷︷ ︸

MMSB

≤ Eθr;θ

[
Ξ
(
ΦN
)
R−1

υϕ

(
ΦN
)
Ξ
(
ΦN
)T ]︸ ︷︷ ︸

NSMSB

+Cθ (ϕ) , (49a)

where ΦN =

[ (
θN
)T

θr1
T
N

]
, Ξ
(
ΦN
)
= Ξ

(
θN
)
=

[
ξ
(
θN
)T

0

]
and υϕ

(
x;ΦN

)
= υθ

(
x,θr;θ

N
)
. In particular,

regarding the estimation of θ, since θ =
(
1,0T

)
ϕ, one obtains:

ξ
(
θN
)T

R−1
υθ

(
θN
)
ξ
(
θN
)
≤ Eθr;θ

[
ξ
(
θN
)T

R−1
υϕ

(
ΦN
)
ξ
(
θN
)]
. (49b)

Interestingly enough, it is straightforward to extend (49a-49b) by introducing tighter NSLBs. It suffices to note that
the addition of any subset of K constraints:

∀k ∈ [N + 1, N +K] ,ϕk − ϕ = Ex|ϕ

[(
ϕ̂ (x,θr)− ϕ

)
υϕ

(
x;ϕk

)]
,ϕk =

(
θk,
(
θkr

)T)T

,

to (48) restricts the class of viable estimators ϕ̂ ∈ UW (SX ,Θr
) and therefore increases the associated NSBBA (42c),

leading to:

Ξ
(
θN
)
R−1

υθ

(
θN
)
Ξ
(
θN
)T ≤ Eθr;θ

[
Ξ
(
ΦN
)
R−1

υϕ

(
ΦN
)
Ξ
(
ΦN
)T ]

+Cθ (ϕ)

≤ Eθr;θ

[
Ξ
(
ΦN+K

)
R−1

υϕ

(
ΦN+K

)
Ξ
(
ΦN+K

)T ]
+Cθ (ϕ) , (50a)

and, regarding the estimation of θ, to:

ξ
(
θN
)T

R−1
υθ

(
θN
)
ξ
(
θN
)
≤ Eθr;θ

[
ξ
(
θN
)T

R−1
υϕ

(
ΦN
)
ξ
(
θN
)]

≤ Eθr;θ

[
ξ
(
θN+K

)T
R−1

υϕ

(
ΦN+K

)
ξ
(
θN+K

)]
, (50b)

where ΦN+K =

[
ΦN ,

[
θN+1 . . . θN+K

θN+1
r . . . θN+K

r

]]
, Ξ

(
ΦN+K

)
=

[
Ξ
(
ΦN
)
,

[
ξ
(
θN+1

)
. . . ξ

(
θN+K

)
θN+1
r − θr . . . θN+K

r − θr

]]
,

and ξ
(
θN+K

)
=
(
ξ
(
θN
)T
, ξ
(
θN+1

)
, . . . , ξ

(
θN+K

))T
. Then one can take advantage of the use of the numerous

(standard) BBAs derived for parameter vector [23][24], however, at a cost of numerical integration or Monte Carlo
simulation to evaluate their statistical expectation.
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1) Old and new non-standard lower bounds:

A typical example is the NSCRB obtained for N = 2, where θ2 = (θ, θ + dθ) leading to the following subset of
constraints: (

0

dθ

)
= Ex,θr;θ

[(
θ̂ (x,θr)− θ

)( 1SX ,Θr
(x,θr)

υθ (x,θr; θ + dθ)

)]
, (51a)

which is equivalent to [55, Lemma 3]:(
0

1

)
= Ex,θr;θ

[(
θ̂ (x,θr)− θ

)( 1SX ,Θr
(x,θr)

υθ(x,θr;θ+dθ)−1
dθ

)]
, (51b)

and can be reduced to [55, Lemma 2]:

1 = Ex,θr;θ

[(
θ̂ (x,θr)− θ

) p (x,θr; θ + dθ)− p (x,θr; θ)

dθp (x,θr; θ)

]
, (51c)

since Ex,θr;θ

[
1SX ,Θr

(x,θr) (υθ (x,θr; θ + dθ)− 1)
]

= 0. Then by letting dθ be infinitesimally small, (49b)
becomes [4, (5)]:

MCRBθ , Ex,θr;θ

[(
∂ ln p (x,θr; θ)

∂θ

)2
]−1

≤ NSCRBθ , Eθr;θ

Ex|ϕ

[(
∂ ln p (x|ϕ)

∂θ

)2
]−1

 , (52)

where the NSCRBθ is the MCB [2, (7)]. Following the rationale introduced in [14], a straightforward extension
of (52) is obtained for θN =

(
θ1, . . . , θN

)T
, θn = θ + (n− 1) dθ, 1 ≤ n ≤ N . Indeed the set of N associated

constraints:
dθwN = Ex,θr;θ

[(
θ̂ (x,θr)− θ

)
υθ

(
x,θr;θ

N
)]
, (53a)

where wT
N = (0, . . . , N − 1), by letting dθ be infinitesimally small, becomes equivalent to [14][55, Lemma 3]:

v′ = Ex,θr;θ

[(
θ̂ (x,θr)− θ

)
b′
θ (x,θr)

]
, (53b)

where v′ = (0, 1, 0, . . . , 0)T and b′
θ (x,θr) =

1
p(x,θr;θ)

(
p (x,θr; θ) ,

∂p(x,θr;θ)
∂θ , . . . , ∂

N−1p(x,θr;θ)
∂N−1θ

)T
. Since v′1 = 0

and Ex,θr;θ

[
(b′

θ)1 (x,θr) (b
′
θ)n (x,θr)

]
= Ex,θr;θ

[
∂np(x,θr;θ)

∂nθ

]
= 0, 2 ≤ n ≤ N − 1, (53b) is actually equivalent

to [55, Lemma 2]:
e1 = Ex,θr;θ

[(
θ̂ (x,θr)− θ

)
bθ (x,θr)

]
, (53c)

where bθ (x,θr) = 1
p(x,θr;θ)

(
∂p(x,θr;θ)

∂θ , . . . , ∂
N−1p(x,θr;θ)

∂N−1θ

)T
, and (49b) becomes an inequality between the

Battacharayya bounds (BaBs) [10] of order N − 1:

MBaBθ , eT1Ex,θr;θ

[
bθ (x,θr)b

T
θ (x,θr)

]−1
e1 ≤ NSBaBθ , Eθr;θ

[
eT1Ex|ϕ

[
β (x;ϕ)βT (x;ϕ)

]−1
e1

]
,

(53d)

where β (x;ϕ) = 1
p(x|ϕ)

(
∂p(x|ϕ)

∂θ , . . . , ∂
N−1p(x|ϕ)
∂N−1θ

)T
= bθ (x,θr). Therefore, with the proposed approach, we not

only extend the result introduced in [34, (11)] under the restrictive assumption of a prior independent of θ, but we
can also assert that MBaBθ ≤ NSBaBθ if the prior does not depend on θ, which has not been proven in [34].
As with the CRB and the BaB, (49b) also allows to derive inequalities between modified and non-standard forms
of all remaining BB approximations released in the open literature, namely the FGB [14], the MHB [19], the GlB
[20], the AbB [22], and the CRFB [24, (101-102)].
Furthermore, an example of a tighter NSLB can be easily derived from the usual NSCRB (52). Indeed by adding
to (51a) the following K = Pr constraints:

0 = Ex|ϕ

[(
θ̂ (x,θr)− θ

)
υϕ
(
x;ΦK

)]
,
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where ϕk =
(

θ
θr+ukhk

r

)
and uk is the kth column of the identity matrix IPr

, one obtains the following equivalent
set of constraints [55, Lemma 3+Lemma 2]:

e1 = Ex|ϕ

[(
θ̂ (x,θr)− θ

)
c
(
x;ΦK+1

)]
,

cT
(
x;ΦK+1

)
=
(
p(x|θr;θ+dθ)
p(x|θr;θ)dθ

− 1
dθ ,

p(x|θr+u1h1
r,θ)

p(x|θr;θ)h1
r

− 1
h1
r
, . . . , p(x|θr+uKhK

r ,θ)
p(x|θr;θ)hK

r
− 1

hK
r

)
.

By letting
(
dθ, h1r, . . . , h

Pr
r

)
be infinitesimally small, then c

(
x;ΦK+1

)
→ ∂ ln p(x|ϕ)

∂ϕ and (50b) becomes [33, (24)]:

MCRBθ , Ex,θr;θ

[(
∂ ln p (x,θr; θ)

∂θ

)2
]−1

≤ NSCRBθ , Eθr;θ

Ex|ϕ

[(
∂ ln p (x|ϕ)

∂θ

)2
]−1


≤ NSCRBθ = Eθr;θ

[
eT1Ex|ϕ

[
∂ ln p (x|ϕ)

∂ϕ

∂ ln p (x|ϕ)
∂ϕT

]−1

e1

]
. (54)

In [33] NSCRBθ was introduced under the restrictive assumption of a prior independent of θ, which can be relaxed
as shown with the proposed framework. Furthermore, the above example illustrate that the tightest form of any
NSLB is obtained when the set of unbiasedness constraints are expressed for ϕ as in (50b) and not only for θ as
in (49b).

D. Non-standard lower bounds (continued)

Any of the NSLBs mentioned in the previous section can be derived in the general case where p (θr; θ) does
depend on θ, except that no general inequalities between MBBA and NSBBA can any longer be exhibited.
Interestingly enough, since any existing standard LB can be obtained from (42c) as Cϕ

(
ϕ̂BBA

)
(a multiple

parameters version of (8b)), it has a non-standard counterpart Eθr;θ

[
Cϕ

(
ϕ̂BBA

)]
, which includes the FGB

[14], the MHB [19], the GlB [20], the AbB [22], and the CRFB [24, (101-102)]. Last, let us recall that in
general ϕ̂BBA ∈ US (SX ,Θr

), therefore the associated NSLB cannot be compared a priori neither with the MSE of
θ̂ML ∈ UW (SX ) nor with any of its LBs (computed with p (x; θ)). In particular, NSLBs are not in general neither
upper bounds on the MSE of θ̂ML nor on any of its LBs.

V. APPLICATION EXAMPLES

A. Application examples in the open literature

Since the preliminary works [2], [3] and [4], non-standard estimation has given rise to a growing interest [26]-[42]
as compound probability distributions arise in many applications such as telecom or radar and hybrid parameter
vectors occur in miscellaneous estimation problem.

1) Application examples in telecom:

The MCRB has been often used in linearly modulated signals for synchronization problems involving the estimation
of carrier-frequency offset, carrier phase, and timing epoch [4][26][27] where the calculation of the CRB is
infeasible, while application of the MCRB leads to useful expressions with moderate analytical effort. In [30]
the MCRB is computed for linearly modulated signals corrupted by correlated impulsive noise, wherein data
symbols and noise power are regarded as nuisance parameters. In [32] linearly modulated signals are observed
on a frequency-flat time-selective fading channel affected by additive white Gaussian noise. High signal-to-noise
ratio asymptote of the CRB and MCRBs are derived and compared, for the joint estimation of all those channel
parameters that impact signal detection, namely, carrier phase, carrier frequency offset, frequency rate of change,
signal amplitude, fading power, and Gaussian noise power. [33] considers the problem of estimating the carrier
frequency offset affecting a linearly modulated waveform received through a Rician fading channel. The relevant
CRB, HCRB, MCRB and NSCRBs are calculated and the relative merits of these bounds are discussed, both in
terms of their tightness and ease of calculation. [36] addresses the CRB and the MCRB for the joint estimation of
the carrier frequency offset, the carrier phase and the noise and signal powers of binary phase-shift keying (BPSK),
minimum shift keying (MSK), and quaternary phase-shift keying (QPSK) modulated signals corrupted by additive
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white circular Gaussian noise. [40] focuses on the MCRBs related to estimating the parameters of a noisy hybrid
modulated signal which combines the pseudo-random binary codes (PRBC) phase modulation and linear frequency
modulation (LFM). The parameters to be estimated of the PRBC-LFM signal include signal amplitude, carrier
phase, carrier frequency, chirp rate and symbol width.

2) Application examples in radar:

MCRBs and NSLBs have also been investigated in radar applications. [3] derives HCRB on source location
accuracies achievable with far-field sources whose bearings are random and impinging on a two-dimensional
array of sensors whose locations are not known precisely. [2] derived the NSCRB for estimators of the arrival
time of a radar echo of random amplitude, unbiased for all values of the signal amplitude. In [29] a similar
problem is studied for real valued radar echo via the HBB which deterministic part is shown to handle the MSE
threshold phenomena. [31] addresses the derivation of the HCRB for the parameters of a signal composed of a
mixture of spherically invariant random processes. The case of signal composed of a mixture of K-distributed
clutter, Gaussian clutter, and thermal noise belongs to this set, and it is regarded as a realistic radar scenario.
In [37][38] the problem of registration errors involved in the grid-locking problem for successful multisensor
target tracking is addressed, i.e., attitude, measurement, and position biases. Linear least squares and non-linear
expectation-maximisation estimators of these bias terms are derived and their statistical performances compared to
the HCRB as a function of sensor locations, sensors number, and accuracy of sensor measurements. [39] computes
the MCRB for the target parameter (delay, Doppler) estimation error using universal mobile telecommunications
system (UMTS) signals as illuminators of opportunity for passive multistatic radar systems. In [41] the MCRB on the
joint estimation of target location and velocity for a non-coherent passive MIMO radar, employing the OFDMbased
L-band digital aeronautical communication system type 1 signals as signals of opportunity, is investigated. [42]
considers the problem of estimating the parameters of a low-rank compound-Gaussian process in white Gaussian
noise. This situation typically arises in radar applications where clutter is relevantly modeled as compound-Gaussian
with a rankdeficient covariance matrix of the speckle. First, assuming the textures are deterministic, the CRB of the
parameters describing the covariance matrix is derived, which enables one to assess the impact of the time-varying
textures on the estimation performance. Then, considering the textures as random, HCRB, MCB, MCRB are derived
and compared.

B. A new look at Gaussian observation models

In the framework of modern array processing [47], the observation vector x generally consists of a bandpass
signal which is the output of an Hilbert filtering [1][69, §13], i.e., a complex circular vector x ∼ CN (mx,Cx)
with p.d.f.:

pCN (x;mx,Cx) = π−M
∣∣C−1

x

∣∣ e−(x−mx)
HC−1

x (x−mx).

Mostly two different signal models are considered: the deterministic (conditional) signal model and the stochastic
(unconditional) signal model [70]. The discussed signal models are Gaussian and the parameters are connected
either with the expectation value in the deterministic case or with the covariance matrix in the stochastic one. A
simple and well known instantiation is the observation model formed from L independent snapshots of a linear
superposition of an individual signal of interest and noise:

xl = s (τ) al + nl, 1 ≤ l ≤ L, (55)

where a1, . . . , aL are the complex amplitudes of the signal, s ( ) is a vector of M parametric functions depending
on a single deterministic parameter τ , nl ∼ CN

(
0, σ2nIM

)
, 1 ≤ l ≤ L, are independent and identically distributed

(i.i.d.) Gaussian complex circular noises independent of the signal of interest. Additionally if the L components
of a = (a1, . . . , aL)

T are i.i.d. zero mean Gaussian complex circular random variables with variance σ2a, i.e.
a ∼ CN

(
0, σ2aIL

)
, then (55) is an unconditional signal model characterized by a p.d.f. p (x|θ), θ =

(
τ , σ2a, σ

2
n

)T ,
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given by [70]:

p (X|θ) =
∫
p
(
X|a, τ , σ2n

)
p
(
a|σ2a

)
da = e

−Ltr(C−1
x R̂x)

(πM |Cx|)L
,

Cx = σ2as (τ) s (τ)
H + σ2nIM , R̂x = 1

L

L∑
l=1

xlx
H
l ,

p
(
X|a, τ , σ2n

)
= e

− L
σ2
n

tr(Ĉn)

(πσ2
n)

ML , p
(
a|σ2a

)
= e

− aHa

σ2
a

(
πσ2a

)−L
,

Ĉn = 1
L

L∑
l=1

(xl − s (τ) al) (xl − s (τ) al)
H .

Then the MLE (34a) of τ , aka the unconditional MLE (UMLE), is obtained by minimization of the concentrated
criterion [64]:

τ̂ = argmin
τ

{∣∣∣σ̂2as (τ) sH (τ) + σ̂2nIM

∣∣∣} , σ̂2a =
1

∥s (τ)∥2
sH (τ)

(
R̂x − σ̂2nIM

)
s (τ) ,

σ̂2n =
1

M − 1
tr
(
Π⊥

s(τ)R̂x

)
, Π⊥

a = IM − aaH

∥a∥2
,

and the associated CRB, aka the unconditional CRB (UCRB), is [64, (4.64)][71]:

UCRBτ =
σ2n

2h (τ)Lσ2a
SNR

SNR+1

, (56)

where SNR = σ2a/σ
2
n ∥s (τ)∥

2 is the signal-to-noise ratio computed at the output of the single source matched
filter [64], and h (τ) = ∂s(τ)

∂τ

H
Π⊥

s(τ)
∂s(τ)
∂τ . The NSMLE (34b) of τ is actually the conditional MLE (CMLE)

obtained by minimization of the concentrated criterion [64] τ̂ = argmin
τ

{
tr
(
Π⊥

s(τ)R̂x

)}
and the associated

NSCRB is NSCRBτ = Ea|σ2
a
[CCRBτ (a)], where CCRBτ (a) = σ2n/

(
2h (τ) ∥a∥2

)
denotes the conditional

CRB associated to the CMLE [64, (4.68)]. First, it has been shown [64, (4.74)], in the case of a vector of unknown
parameters τ , that asymptotically where L→ ∞:

Cθ (τ̂ ) ≥ Cθ (τ̂ ) = UCRBτ ≥ CCRBτ , (57)

which illustrates that the act of resorting to the NSMLE (here the CMLE) is in general an asymptotic suboptimal
choice in the MSE sense. However, in the case of single unknown parameter τ , (57) becomes:

Cθ (τ̂) = Cθ (τ̂) = UCRBτ ≥ CCRBτ =
σ2n

2Lh (τ)σ2a
,

where Cθ (τ̂) = CCRBτ

(
1 + CCRBτ

2Lh(τ)

∥s(τ)∥2

)
[64, (4.73)]. Second, since ∥a∥2 /σ2a ∼ χ2

2L, i.e. a chi-squared
random variable with 2T degrees of freedom, then [69]:

NSCRBτ =

∣∣∣∣∣ σ2
n

2Lσ2
ah(τ)

L
L−1

∞
if L ≥ 2

if L = 1
. (58)

Therefore, if L ≥ 2:
NSCRBτ

UCRBτ
=
NSCRBτ

Cθ (τ̂)
=

L

L− 1

SNR

SNR+ 1
,

which illustrates the fact that NSLB are not in general neither upper bounds on the MSE of MLEs nor on any of
its LBs. Last, the MCRB (29) can be computed from [55]:

F (θ) = Ea|σ2
a

[
−
∂ ln p

(
a|σ2a

)
∂ϕ∂ϕH

]
+ Ea|σ2

a
[Fϕ (a)] , Fϕ (a) = Ex|θr;θ

[
−
∂ ln p

(
X|a, τ , σ2n

)
∂ϕ∂ϕH

]
,



22

where ϕ =
(
σ2n, σ

2
a,a,a

∗, τ
)T ,

Ea|σ2
a

[
−
∂ ln p

(
a|σ2a

)
∂ϕ∂ϕH

]
=

1

σ2a


0 0 0T 0T 0

0 L
σ2

a
0T 0T 0

0 0 IL 0 0
0 0 0 IL 0
0 0 0T 0T 0

 ,
and [72]:

Fϕ (a) =



ML
(σ2

n)
2 0 0T 0T 0

0 0 0T 0T 0

0 0 ∥s(τ)∥2IL
σ2

n
0 ρsa

∗

σ2
n

0 0 0 ∥s(τ)∥2IL
σ2

n

ρ∗
sa
σ2

n

0 0 ρ∗
sa

T

σ2
n

ρsa
H

σ2
n

2ϱs∥a∥
2

σ2
n

 ,

where ρs =
∂s(τ)
∂τ

H
s (τ) and ϱs =

∥∥∥∂s(τ)
∂τ

∥∥∥2. Therefore MCRBτ = σ2n/
(
2Lσ2aϱs

)
and:

UCRBτ

MCRBτ

=
ϱs
h (τ)

SNR

SNR+ 1
. (59)

In the single tone estimation case for which s (τ) =
(
1, ej2πτ , . . . , ej2π(M−1)τ

)T
, then ϱs/h (τ) = 4− 6

M+1 and:

2

(
1 +

1

SNR

)
≤ UCRBτ

MCRBτ

≤ 4

(
1 +

1

SNR

)
,

which can be an acceptable optimistic approximation of the UCRBτ according to the application under consid-
eration. An additional comparison of the relative looseness of the modified Hammersley-Chapman-Robbins bound
for the unconditional signal model can be found in [29].

VI. CONCLUSION

In the present paper, we have addressed deterministic parameter estimation and the situation where a closed-form
of the conditional p.d.f. does not exist or where a closed-form does exist but the resulting expression is intractable to
derive either LBs or MLEs. We have provided a unified framework allowing to extend the previous theoretical works
released on that problem [2][3][4][29][30][34][35][45][46][52]. First, in terms of intrinsic LBs by showing that any
standard LB can be transformed into a modified one fitted to non-standard deterministic estimation, at the expense
of tightness however. Second, in terms of relative LBs, i.e. dedicated to characterize the asymptotically suboptimal
NSMLEs, by showing that any standard LB has a non-standard version lower bounding the MSE of NSMLEs.
Last, for a broader perspective, let us mention that authors in [73] address compound probability distribution the
other way round, and derive CR-type LBs on the MSE of estimators of random parameter subject to unknown
deterministic nuisance parameters.
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interest are related to radar scene modelling, detection and estimation theory and navigation.



25

Fig. 1. Nabil Kbayer

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

Fig. 2. Jérôme Galy
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