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Intrinsic Cramér-Rao Bounds for Scatter and Shape
Matrices Estimation in CES Distributions

Arnaud Breloy, Guillaume Ginolhac, Alexandre Renaux, Florent Bouchard

Abstract—Scatter matrix and its normalized counterpart, re-
ferred to as shape matrix, are key parameters in multivariate
statistical signal processing, as they generalize the concept of
covariance matrix in the widely used Complex Elliptically Sym-
metric distributions. Following the framework of [1], intrinsic
Cramér-Rao bounds are derived for the problem of scatter and
shape matrices estimation with samples following a Complex El-
liptically Symmetric distribution. The Fisher Information Metric
and its associated Riemannian distance (namely, CES-Fisher) on
the manifold of Hermitian positive definite matrices are derived.
Based on these results, intrinsic Cramér-Rao bounds on the
considered problems are then expressed for three different dis-
tances (Euclidean, natural Riemannian and CES-Fisher). These
contributions are therefore a generalization of Theorems 4 and
5 of [1] to a wider class of distributions and metrics for both
scatter and shape matrices.

Index Terms—Performance Analysis, Intrinsic Cramér-Rao,
Fisher information, Riemannian geometry, CES distributions,
covariance, scatter, Shape, M -estimators.

I. INTRODUCTION

CRAMÉR-RAO lower bounds (CRLBs) are ubiquitous
tools in statistical signal processing, as they characterize

the optimum performances in terms of mean squared error
(MSE) that can be achieved for a given parametric estimation
problem [2]. Hence they are usually used to assess the per-
formance of an estimation process, but they can also provide
a criterion to optimize the parameters of a system. In some
contexts, the parameters to be estimated are inherently satisfy-
ing a system of constraints (e.g. positiveness, normalization...),
which, once taken into account in the estimation process,
translates in gain in estimation accuracy. To reflect this gain,
that does not appear in the standard analysis, the so-called
constrained CRLBs have been developed in [3–5]. However,
for parameters living in a manifold (e.g. positive definite
matrices, subspaces, rotation matrices, . . .) the constraints
often may not be explicited in a simple system of equations, so
a constrained CRLB [3–5] cannot be derived for a more refined
performance study. Additionally, the classical CRLB applies
on the MSE (Euclidean metric), while this criterion may not
be the most appropriate for characterizing the performance
when parameters are living in a manifold. For example [6–
9] proposed CRLBs for periodic error costs, more suited to
angle estimation problems. In our context, a lower bound on
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the mean natural Riemannian distance can be more relevant
and also reveal hidden properties of estimators.

To overcome these issues, intrinsic (i.e. manifold oriented)
versions of the Cramér-Rao inequality have been established
and studied in [1, 10–16]. In [1] intrinsic CRLBs are expressed
in the form of a matrix inequality on the covariance of
the inverse exponential map. This quantity is shown to be
greater (in the matrix sense) than a matrix involving the
Fisher information matrix and Riemanian curvature terms. A
key property is that this inequality is valid for any chosen
Riemannian metric. Thus, it allows to derive intrinsic CRLB
on the distances associated to any chosen Riemannian metric.
Notably, [1] obtained intrinsic CRLBs for the problem of
covariance matrix estimation under the Gaussian assumption.
This result provides a lower bound on the natural Riemannian
distance on H++

M (the manifold of Hermitian positive definite
matrices) as well as interesting insights, e.g. the observation of
a bias of the sample covariance matrix at low sample support,
not exhibited by the traditional Euclidean analysis.

The aim of this work is to apply this intrinsic analysis to the
class of Complex Elliptically Symmetric (CES) distributions
[17–19]. These distributions provide a class that has attracted
interest in the signal processing community, as it includes a
large panel of well known distributions that can accurately
model various physical phenomenon, such as radar clutter
measurements [20, 21] or observations in image processing
[22–24]. The CES distributions are in particular characterized
by their scatter matrix (or its normalized counterpart, referred
to as shape matrix) that is proportional to the covariance
matrix if it exists. The presented results are the following:
i) We obtain the Fisher information metric and associated
Riemannian distances induced by CES distributions in the
complex case. On a side note, the latter offers generalized
Riemannian distances that seems interesting for building new
regularized estimators in the vein of [39–42]. ii) We derive
intrinsic CRLBs for the problem of scatter and shape matrices
estimation under CES distribution [19]. These results extend
the Euclidean CRLBs from [25–28] to various Riemannian
distances, as well as a the Theorems 4 and 5 of [1] to a
wider class of distributions, metrics, and for both scatter and
shape matrices. An interesting note is that CRLBs for shape
matrix estimation were not previously derived with practical
formulation for the Euclidean metric. The proposed result
allows then to draw a practical comparison of different M -
estimators.
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II. CES DISTRIBUTIONS

CES distributions [17] encompass a large family of mul-
tivariate distributions. We refer the reader to the very com-
prehensive and detailed review on the topic in [18, 19]. A
vector z ∈ CM follows a zero-mean CES distribution, denoted
z ∼ CES (0,Σ, g) if it admits the stochastic representation
z

d
=
√
Q Σ1/2 u where u ∈ CM follows a uniform distribution

on the complex unit sphere, Q ∈ R+ is non-negative real
random variable of probability density function p, indepen-
dent of u, and called the second-order modular variate, and
Σ1/2 ∈ CM×M is a factorization of the scatter matrix Σ. We
focus here only on the absolute-continuous case, i.e. when
Σ ∈ H++

M . In this case, the probability density function (pdf)
of z is given as

f (z|Σ, g) ∝ |Σ|-1g
(

zHΣ-1z
)
, (1)

where the function g : R+ −→ R+ is called the density
generator and is related to the pdf of the second-order modular
variate by:

p (Q) = δ-1
M,gQM−1g (Q) . (2)

Notice that the definition of a CES distribution naturally
presents a scaling ambiguity. Indeed, consider τ ∈ R∗+, the
couples {Q, Σ} and {Q/τ, τΣ} lead to the same distribution
of z. This ambiguity is not impactful, as most of adaptive
processes only require an estimate of the scatter matrix up
to a scale [21]. To this end, let us define Σ = σ2V where
V denotes the normalized scatter matrix, called the shape
matrix, and the scalar σ2 is referred to as scale parameter. In
the following we will chose the canonical unitary determinant
normalization advocated in [29]. Hence V belongs to the
manifold referred to as the special group of H++

M , denoted

SH++
M =

{
V ∈ H++

M | |V| = 1
}
. (3)

Eventually, a simple way to redefine a CES distribution z ∼
CES (0,Σ, g) so that scale and shape parameters coincide is
to absorb the ambiguity in the second-order modular variate
as Q′ d

= M
√
|Σ|Q, leading to the equivalent distribution z ∼

CES (0,V, g̃), where g̃ is set from p(Q′) and (2).
From samples {zk}k∈[[1,K]] following z ∼ CES (0,Σ, g)

the maximum likelihood estimator of the scatter matrix is the
solution of the fixed point equation [19, 30–32]

Σ̂ =
1

K

K∑
k=1

ψ
(
zHk Σ̂-1zk

)
zkzHk , (4)

where ψ(t) = −g′(t)/g(t). Note that, in practice, the true
density generator may not be known. In the robust estimation
theory, an M -estimator of the scatter matrix [33, 34] refers to
an estimator built using a function ψ(t) that is not necessarily
linked to g in (4). An important note is that M -estimators
may not be consistent in scale. A practical way to remove
this ambiguity is to focus on the shape matrix estimation by

constructing V̂ = Σ̂/ M

√
|Σ̂|, for a given M -estimator (or

MLE) of the scatter matrix Σ̂.

III. FISHER INFORMATION METRIC AND NATURAL
DISTANCE INDUCED BY CES DISTRIBUTIONS

In this section we study the information geometry of the
likelihood (1) onH++

M and SH++
M . First, recall that the tangent

spaces of H++
M and SH++

M are respectively

TΣH++
M = HM (manifold of Hermitian matrices),

TVSH++
M = {Ω ∈ HM | Tr{V-1 Ω} = 0}.

(5)

We have the following results:

Theorem 1 (FIM for CES) Let Ω1 and Ω2 be in TΣH++
M .

The Fisher information metric associated to K i.i.d. samples
following z ∼ CES(0,Σ, g), Σ ∈ H++

M is

gfimΣ (Ω1,Ω2) = K gcesΣ (Ω1,Ω2) , with

gcesΣ (Ω1,Ω2)

= αTr
{
Σ-1Ω1Σ

-1Ω2

}
+ βTr

{
Σ-1Ω1

}
Tr
{
Σ-1Ω2

} (6)

and

α = 1−
E
[
Q2φ′ (Q)

]
M(M + 1)

and β = α− 1 (7)

using φ(t) = −ψ(t) = g′(t)/g(t). Now, let Ω1 and Ω2 be
in TVSH++

M . The Fisher information metric of the equivalent
model z ∼ CES(0,V, g̃), V = Σ /σ2 ∈ SH++

M , is

gfimV (Ω1,Ω2) = K gcesV (Ω1,Ω2) , with

gcesV (Ω1,Ω2) = α̃Tr
{
V-1Ω1V

-1Ω2

} (8)

and α̃ = α/σ4 (with σ2 = M
√
|Σ|).

Proof: The proof from [35] is extended to the complex
case and SH++

M in the supplementary materials.

Theorem 2 (Induced Riemannian distances) gcesΣ in (6) is
a Riemannian metric on H++

M if and only if α > 0 and α +
Mβ > 0. The distance induced by this metric on H++

M is
defined ∀Σ1,Σ2 ∈ H++

M as

d2ces(Σ1,Σ2) = α

M∑
i=1

log2 λi + β

(
M∑
i=1

log λi

)2

, (9)

where λi is the ith eigenvalue of Σ-1
1 Σ2. Additionally, gcesV

in (8) is a Riemannian metric on SH++
M if and only if α̃ >

0. The distance on SH++
M induced by this metric is defined

∀V1,V2 ∈ SH++
M as

d2sp−ces(V1,V2) = α̃

M∑
i=1

log2 λi, (10)

where λi is the ith eigenvalue of V-1
1 V2.

Proof: The proof is in the supplementary material and
relies on [36–38].

Notice that (6) yields the classical Riemannian met-
ric/distance on H++

M [37] for α = 1 and β = 0. This also cor-
responds to the Gaussian case in [1] since α = 1 and β = 0 are
obtained for the Gaussian density generator g(t) = exp(−t)
(see [28] for the calculation of these coefficients). On the
other hand, dsp−ces corresponds to a scaled natural distance
on SH++

M for any underlying distribution, as the term in β
vanishes in the Fisher information metric.
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IV. INTRINSIC CRLBS ON SCATTER AND SHAPE MATRICES

In the following, we derive the intrinsic CRLBs for unbiased
estimators of the scatter matrix Σ̂ ∈ H++

M for {zk}k∈[[1,K]],
i.i.d. distributed according to z ∼ CES (0,Σ, g). In parallel,
we obtain intrinsic CRLBs for unbiased estimators of the shape
matrix V̂ for the equivalent model z ∼ CES (0,V, g̃) with
Σ = M

√
|Σ|V so V ∈ SH++

M . The terms α (resp. α̃) and β
refers to (7). The derivations rely on the steps described in
[1] and appropriate construction of orthonormal basis of the
tangent spaces TΣH++

M and TΣSH++
M in (5).

A. Euclidean Metric

First recall that the Euclidean metric and distance are

gE(Ω1,Ω2) = Tr{Ω1Ω2},
d2E(Σ1,Σ2) = ‖Σ1 −Σ2‖2F .

(11)

The CRLBs on d2E requires the following definitions:
• {ΩE

i }i∈[[1,M2]] denotes a basis of TΣH++
M in (5) that is

orthonormal w.r.t. the inner product gE in (11). In practice,
we take the canonical Euclidean Basis:

1) ΩE
ii is an n by n symmetric matrix whose ith diagonal

element is one, zeros elsewhere
2) ΩE

ij is an n by n symmetric matrix whose ijth and jith
elements are both 2−1/2, zeros elsewhere.

3) Ωh−E
ij is an n by n Hermitian matrix whose ijth element

is 2−1/2
√
−1, and jith element is −2−1/2

√
−1, zeros

elsewhere (i < j).
which is re-indexed over i to lighten the notations.
• {ΩspE

i }i∈[[1,M2−1]] denotes a basis of TΣSH++
M in (5)

that is orthonormal w.r.t. the inner product gE in (11). Re-
mark that TΣSH++

M corresponds to HM deprived from the
line λΣ-1, λ ∈ R, as its orthonormal complementary is
NΣSH++

M = {λΣ-1 |λ ∈ R}. Therefore, its orthonormal basis
can be computed in practice by augmenting {ΩE

i }i∈[[1,M2]]

with the element Σ-1, then applying a Gram-Schmidt or-
thonormalization process, using the inner product gE in (11),
and starting from Σ-1. The output of this process is then{
γΣ-1,ΩspE

1 , . . . ,ΩspE
M2−1,0

}
(with appropriate normaliza-

tion γ), allowing to extract the desired basis.

Theorem 3 (Euclidean CRLBs) The CRLBs on the distance
d2E for scatter and shape matrices estimation are

E
[
d2E

(
Σ̂,Σ

)]
≥ Tr

{
F-1

E

}
E
[
d2E

(
V̂,V

)]
≥ Tr

{
F-1

spE

}
,

(12)

with for i, j ∈ [[1,M2]]

[FE ]i,j = KαTr
{
Σ-1ΩE

i Σ-1ΩE
j

}
+KβTr

{
Σ-1ΩE

i

}
Tr
{
Σ-1ΩE

j

}
,

(13)

and with for i, j ∈ [[1,M2 − 1]]

[FspE ]i,j = Kα̃Tr
{

V-1ΩspE
i V-1ΩspE

j

}
, (14)

Proof: The Fisher information matrix entries are obtained
using gfimΣ in (6) (resp. gfimV in (8)) and the basis {ΩE

i } (resp.
{ΩspE

i }). The result is then a direct application of Corollary

2 in [1], i.e. neglecting the Riemannian curvature terms for
small errors.

This theorem allows to compute the Euclidean CRLB on
the shape matrix in a practical way and without requiring a
parameterization that ensures unit determinant. This is, to the
best of our knowledge, a new result for the Euclidean distance.
For the scatter matrix, we retrieve the results of [26].

B. Natural Riemannian metric

Recall that the natural Riemannian metric and associated
distances on H++

M and SH++
M are identically defined as

gNΣ (Ω1,Ω2) = Tr{Σ-1Ω1Σ
-1Ω2},

d2N (Σ1,Σ2) =
∥∥∥log(Σ−1/2

1 Σ2 Σ
−1/2
1 )

∥∥∥2
F
.

(15)

The CRLBs on d2N requires the following definitions:
• {ΩN

i }i∈1...M2 denotes a basis of TΣH++
M in (5) that is

orthonormal w.r.t. the inner product gNΣ in (15). In practice,
such basis can be obtained by coloring the basis of previous
section as ΩN

i = Σ1/2ΩE
i Σ1/2.

• {ΩspN
i }i∈[[1,M2−1]] denotes a basis of TΣSH++

M in (5)
that is orthonormal w.r.t. the inner product gNΣ in (15). In
practice, such basis can be obtained by the same process
as for {ΩspE

i }, but using the inner product gNΣ in (15) to
perform the orthonormalization process. Note that the ini-
tial basis should however be augmented with Σ here, since
the orthonormal complementary of TΣSH++

M w.r.t. gNΣ is
NΣSH++

M = {λΣ |λ ∈ R}.

Theorem 4 (Natural Riemmanian CRLBs) The CRLBs on
the distance d2N for scatter and shape matrices estimation are

E
[
d2N

(
Σ̂,Σ

)]
≥ M2 − 1

Kα
+ (K(α+Mβ))-1

E
[
d2N

(
V̂,V

)]
≥ M2 − 1

Kα̃

(16)

Proof: For the scatter matrix we plug the basis {ΩN
i } =

{Σ1/2
ΩE

i Σ1/2} into gfimΣ in (6). The entries of the Fisher
information matrix are then

gfimΣ

(
ΩN

i ,Ω
N
j

)
= KαTr

{
ΩE

i ΩE
j

}
+KβTr

{
ΩE

i

}
Tr
{
ΩE

j

}
.

With proper ordering of {ΩE
i } this matrix is obtained as

FN = KαIM2 +Kβ

[
1M×M 01×M(M−1)

0M(M−1)×1 0M(M−1)×M(M−1)

]
,

which reads FN = KαI + KMβvfimvH
fim with vfim =

1/
√
M
[

1M | 0M(M−1)
]
. Hence the eigenvalues of F-1

N can
be easily identified as K -1

[
(α+Mβ)-1, α-1, . . . , α-1

]
and

summed to obtain its trace. For the shape matrix, we plug the
basis {ΩspN

i } into (8). This gives the entries of the Fisher In-
formation Matrix as [FspN ]i,j = Kα̃δi,j , ∀i, j ∈ [[1,M2−1]],
thanks to the orthonormality of {ΩspN

i } w.r.t. gnatΣ . The Fisher
information matrix is therefore FspN = Kα̃IM2−1 whose the
trace of inverse reads directly. The results are then applications
of Corollary 2 in [1].
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C. CES-Fisher Information Metric

Recall that the CES-Fisher information metric and associ-
ated distance are given in (6) and (9) respectively. We denote
{Ωces

i }i∈1...M2 , a basis of TΣH++
M that is orthonormal w.r.t.

to the metric (inner product) gcesΣ . Closed-form expressions of
this basis are not needed for the developments, but it can be
constructed numerically in practice.
Remark: Note that, from Theorem 2, the CES-Fisher (10)
distance on SH++

M corresponds to the natural Riemannian
distance (15) on SH++

M scaled by α. Hence, regarding to the
shape estimation, the Theorem 4 holds for both Natural and
CES-Fisher distances up this scale factor in definition of the
estimation error.

Theorem 5 (CES-Fisher CRLB) The CRLBs on the dis-
tance d2ces for scatter matrix estimation is

E
[
d2ces

(
Σ̂,Σ

)]
≥ M2

K
(17)

Proof: The Fisher information matrix entries are obtained
by plugging the basis {Ωces

i } in gfimΣ in (6). Notice that
gfimΣ = KgcesΣ , so the Fisher Information Matrix is, by
construction (orthonormality), equal to Fces = KIM2 . The
trace of its inverse is therefore M2/K and the proof is
concluded by applying the Corollary 2 in [1].

V. SIMULATIONS

Previous results are illustrated for the multivariate Student
t-distribution with d ∈ N∗ degree of freedom (see [19]
for details). We have z ∼ CES(0,Σ, gd) with gd(t) =
(1 + d-1t)−(d+M), hence φ(t) = −(d + M)/(d + t) and
α = (d+M)/(d+M+1) in (7). The scatter matrix is built as
a Toeplitz matrix [ΣT ]i,j = ρ|i−j| with ρ = 0.9

√
1/2 (1 + i).

This matrix is then normalized so that the scatter and shape
matrices coincide. We consider the following estimators of the
scatter: a) SCM, defined as Σ̂SCM = K -1∑K

k=1 zkzHk , b)
MLE,defined in (4) using ψ(t) = −φ(t), c) Mismatched MLE,
defined as MLE except that we use d = 10 in ψ regardless
of the underlying distribution, d) Tyler’s M -estimator, defined
in (4) with ψ(t) = M/Kt. Note that this estimator is unique
up to a scaling factor so it will be considered only for shape
estimation. For all this estimates, the corresponding estimators
of the shape are build by re-normalization. To empirically
validate the obtained results, we compare the performance of
the different estimators to the corresponding CRLB in two
settings: d = 100 (close to Gaussian case) and d = 3. Figure
1 displays the performance w.r.t. d2N and d2ces (d2E is omitted
since it has been studied in [26]) in terms of scatter matrix
estimation. Figures 2 displays the performance w.r.t. d2E and
d2N (proportional to d2ces) in terms of shape matrix estimation.

In Figure 1, for d = 100, α ' 1 and β ' 0, so gnatΣ and gcesΣ

generate almost identical distances and corresponding CRLBs,
as observed in Figure 1. Interestingly, as noted in [1], these
performance criteria show that the studied estimators are not
efficient at low sample support. For d = 3, we note that the
SCM and the mismatched MLE (due to the bias induced on
its scale) have poor performance as expected.
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Fig. 1. Natural Riemannian (top) and CES-Fisher (bottom) CRLB and
corresponding mean squared distance of scatter matrix estimators for t-
distribution versus K/M . Legend: CRLB on the considered distance (black),
SCM (red), MLE (green), Mismatched MLE (magenta). M = 10, and
d = 100 (left) or d = 3 (right).
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Fig. 2. Euclidean (top) and Natural Riemannian (bottom) CRLB and corre-
sponding mean squared distance of shape matrix estimators for t-distribution
versus K/M . Legend: CRLB on the considered distance (black), SCM (red),
MLE (green), Mismatched MLE (magenta), Tyler (blue). M = 10, and
d = 100 (left) or d = 3 (right).

Conversely, Figure 2 illustrates that intrinsic CRLBs on
shape allow to draw a meaningful comparison of different M -
estimators using both Euclidean and Natural distance, regard-
less of the scaling ambiguities inherent to CES distributions.
Indeed, such comparison is relevant when the process of
interest is not sensitive to scale (e.g. for adaptive filtering).
Here, both distance reveal that all the studied shape matrix
estimators are not efficient at low sample support. We also
notice that M -estimators such as the mismatched MLE and
Tyler’s estimator appear here close to the MLE in terms of
performance for the problem of shape estimation. However,
this is not the case for the SCM if the distribution is not close
to Gaussian (d = 3).
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