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Abstract

Scatter matrix and its normalized counterpart, referred to as shape matrix, are key
parameters in multivariate statistical signal processing, as they generalize the concept
of covariance matrix in the widely used Complex Elliptically Symmetric distributions.
Following the framework of [1], intrinsic Cramér-Rao bounds are derived for the prob-
lem of scatter and shape matrices estimation with samples following a Complex El-
liptically Symmetric distribution. The Fisher Information Metric and its associated
Riemannian distance (namely, CES-Fisher) on the manifold of Hermitian positive def-
inite matrices are derived. Based on these results, intrinsic Cramér-Rao bounds on the
considered problems are then expressed for three different distances (Euclidean, natu-
ral Riemannian and CES-Fisher). These contributions are therefore a generalization of
Theorems 4 and 5 of [1] to a wider class of distributions and metrics for both scatter
and shape matrices.



Performance Analysis, Intrinsic Cramér-Rao, Fisher information, Riemannian ge-
ometry, CES distributions, covariance, scatter, Shape, M -estimators.

0.1 Introduction
Cramér-Rao lower bounds are ubiquitous tools in statistical signal processing, as

they characterize the optimum performances in terms of mean squared error that can be
achieved for a given parametric estimation problem [2]. Hence they are usually used to
assess the performance of an estimation process, but they can also provide a criterion to
optimize the parameters of a system. In some contexts, the parameters to be estimated
are inherently satisfying a system of constraints (e.g. positiveness, normalization...),
which, once taken into account in the estimation process, translates in gain in estima-
tion accuracy. To reflect this gain, that does not appear in the standard analysis, the
so-called constrained Cramér-Rao bounds have been developed in [3–5]. However, for
parameters living in a manifold (e.g. positive definite matrices, subspaces, rotation ma-
trices, . . .) the constraints often may not be explicited in a simple system of equations,
as there is no intrinsic set of coordinates. For example, a general expression of the
Cramér-Rao Bounds for the estimation of the covariance matrix using a parameteriza-
tion Σ = Σ (θ) with appropriate parameters vector θ (typically, the real and imaginary
parts of the covariance matrix entries) is given in the form of the inequality

E
[∥∥∥θ̂ − θ

∥∥∥2
F

]
≥ Tr

{
F−1

}
, (1)

where F is the Fisher information matrix. However, notice that θ is treated here as a
vector with arbitrary values, which does not ensure that Σ (θ) is positive definite. There
are also no practical explicit constraints formulations on a parameterization Σ (θ) to
ensure this property. Therefore, a constrained Cramér-Rao bound [3–5] cannot be de-
rived for a more refined or meaningful performance study. Additionally, the classical
Cramér-Rao analysis provides a lower bound on the mean squared error (Euclidean
metric), while this criterion may not be the most appropriate for characterizing the per-
formance in a given context. Especially, for parameters living in a manifold, it can be
more relevant to caracterize a lower bound on the mean natural Riemannian distance
between the true parameters and the estimators, which can also reveal hidden properties
of estimators.

To overcome these two issues, intrinsic (i.e. in a manifold setting) versions of the
Cramér-Rao inequality have been established in [1, 6–10], and, for example, applied
to rotation matrices estimation problems in [11, 12]. Notably, in [1] intrinsic bounds
are expressed in the form of a matrix inequality between the covariance of the inverse
exponential map and the Fisher information matrix, which is valid for any chosen Rie-
mannian metric. Hence, this inequality allows to obtain Cramér-Rao bounds for various
distances (depending on the chosen metric). In [1], these bounds are then applied to
the problems of covariance matrix and subspace estimation for samples following a
multivariate Gaussian distribution (for both real and complex case). Covariance ma-
trix estimation is a fundamental issue in signal processing and this intrinsic analysis
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offered a lower bound on a relevant performance criterion (the natural Riemannian dis-
tance between Hermitian positive definite matrices) as well as interesting insights, e.g.
the observation of a bias at low sample support that is not exhibited by the traditional
Cramér-Rao analysis.

The aim of this work is to generalize this intrinsic analysis to the class of Complex
Elliptically Symmetric (CES) distributions [13–15]. The multivariate CES distribu-
tions are defined by a density generator, a center of distribution, and a scatter matrix
(referred to as shape matrix if normalized), which is proportional to the covariance
matrix if the latter exists. These distributions provide a class that has recently at-
tracted interest in the signal processing community, as it includes a large panel of well
known distributions such as Weibull, Student t-distribution, Generalized Gaussian, K-
distribution. . . that can accurately model various physical phenomenon, such as radar
clutter measurements [16, 17] or observations in image processing [18–20]. Addition-
ally, CES distributions share connections with M -estimators and the robust estimation
theory [21]. This general framework has been extensively used in the modern estima-
tion/detection literature due to its interest, both from a theoretical and practical point
of view (see e.g. [15] and references therein). The concepts and tools from Rieman-
nian geometry also raised recent interest in this context, as they allow to reveal hidden
convexity of likelihood functions, as well as designing practical regularization penal-
ties for M -estimators [22–25]. Non-intrinsic Cramér-Rao bounds for scatter matrix
estimation have been established for several CES distribution in [26–28], and a gener-
alized Slepian-Bangs formula to obtain the entries of the Fisher information matrix for
CES distribution is derived in [29]. However, these studies are performed in the tradi-
tional Euclidean setting and do not offer the aforementioned advantages of an intrinsic
analysis.

Using the framework of [1], we derive in this paper intrinsic Cramér-Rao bounds
for the problem of scatter and shape matrix estimation with samples following a CES
distribution [15]. To this aim, we first study the information geometry induced by a
CES likelihood on the set of Hermitian positive definite matrices. We derive the Fisher
information metric and its associated Riemannian distance (namely, CES-Fisher). As
a byproduct, we fully describe the Riemannian geometry of the positive definite matri-
ces manifold equipped with this metric (Levi-Civita connection, Geodesics). We note
that this CES-Fisher metric have also been studied in [30, 31] but these results are
not developed for data with complex entries, and our derivations propose an alternate,
more concise proof. Second, based on the previous results, we derive intrinsic Cramér-
Rao bounds on the considered problem for three different distances (Euclidean, natural
Riemannian and CES-Fisher) for both the scatter and shape matrix parameters. These
contributions provide therefore a generalization of Theorems 4 and 5 of [1] to a wider
class of distribution and metrics for the scatter matrix. The Cramér-Rao bounds derived
on the shape matrix are original for both Euclidean and Riemannian distances. Notably,
these results allow to draw a fair comparison of different M -estimators, regardless of
the scaling ambiguities inherent to CES distributions.

The paper is organized as follows. Section II-A and II-B provide an introduction to
CES distributions, which is oriented on the problem of scatter matrix estimation in this
context. We also emphasize on a scaling ambiguity naturally brought by CES distribu-
tions, leading to the definition of shape matrix. Section II-C presents the background
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on intrinsic Cramér-Rao bounds. Section III deals with the information geometry in-
duced by a CES likelihood: we derive the Fisher information metric and its associated
Riemannian distance (namely CES-Fisher) on the set of Hermitian positive definite
matrices. Section IV builds upon these results to derive intrinsic Cramér-Rao bounds
on the problem of scatter matrix estimation in CES distributions for different distances:
Euclidean distance, natural Riemannian distance and CES-Fisher distance. Section V
extends these results on the shape matrix estimation problem. Section VI illustrates
these results with Monte-Carlo simulations for the multivariate Student t-distribution.

The following convention is adopted: italic indicates a scalar quantity, lower case
boldface indicates a vector quantity and upper case boldface a matrix. ·H denotes the
transpose conjugate operator or the simple conjugate operator for a scalar quantity. For
a function of a real parameter g, g′(t) = dg(t)/dt denotes its derivative. HM is the
manifold of M ×M hermitian matrices. H+

M is the manifold of M ×M hermitian
nonnegative definite matrices. H++

M is the manifold of M × M hermitian positive
definite matrices. SH++

M is the special group of H++
M , i.e. the the manifold of M ×

M Hermitian positive definite matrices with unit determinant. A < B means A −
B ∈ H+

M for A, B ∈ HM . DΩ2[Ω1] denotes the directional derivative of Ω2 in the
direction Ω1. CES(a,Σ, g) is a complex elliptic symmetric vector of mean a, scatter
matrix Σ and density generator g. E [ ] is the expectation operator. IM is the M ×M
identity matrix. |Σ| is the determinant of the matrix Σ and Tr{} is the Trace operator.
θ̂ is an estimate of the parameter θ. {wn}n∈[[1,N ]] denotes the set of n elements wn

with n ∈ [[1, N ]] and whose writing will often be contracted into {wn}. diag(an) is
the N × N diagonal matrix with diagonal elements an. 0M×N (respectively 1M×N )
denotes the M ×N matrices with zeros (respectively ones) in all entries. δi,j denotes
the Kronecker delta applied to the couple (i, j).

0.2 Background

0.2.1 CES distributions, Scatter and Shape matrices
Complex Elliptically Symmetric (CES) distributions [13] refer to a large family of
multivariate distributions. We refer the reader to the very comprehensive and de-
tailed review on the topic in the references [14, 15], from which we adopt most of
the formalism. A vector z ∈ CM follows a zero-mean CES distribution, denoted
z ∼ CES (0,Σ, g), if it admits the following stochastic representation:

z
d
=
√
Q Σ

1/2 u, (2)

where:
• The notation d

= stands for “has the same distribution as”.
• The vector u ∈ CM follows a uniform distribution on the complex unit sphere
CHM =

{
u ∈ CM | ‖u‖ = 1

}
, denoted u ∼ U

(
CSM

)
.

• The scalarQ ∈ R+ is non-negative real random variable of probability density func-
tion p, independent of u, and called the second-order modular variate (while

√
Q is

called the modular variate).
• The matrix Σ1/2 ∈ CM×M is a factorization of the scatter matrix Σ = Σ1/2ΣH/2. If
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the covariance matrix of z exists, it is proportional to the scatter matrix, i.e. E
[
zzH

]
∝

Σ.
We focus here only on the absolute-continuous case, i.e. when the scatter matrix Σ

is full rank. In this case, the probability density function of z is given as

f (z|Σ, g) ∝ |Σ|−1g
(

zHΣ−1z
)
, (3)

where the function g : R+ −→ R+ is called the density generator. The density gen-
erator is satisfying the finite moment condition δM,g =

∫∞
0
tM−1g(t)dt < ∞. This

function g is related to the probability density function of the second-order modular
variate by the relation

p (Q) = δ−1M,gQ
M−1g (Q) . (4)

Notice that the definition of a CES distribution naturally presents a scaling ambi-
guity. Indeed, consider τ ∈ R∗+, the couples {Q, Σ} and {Q/τ, τΣ} lead to the same
distribution of z according to (2). This ambiguity is not impactful, as most of adaptive
processes only require an estimate of the scatter matrix up to a scale [17]. To this end,
let us define

Σ = σ2V, (5)

where V denotes the normalized scatter matrix, called the shape matrix, and the scalar
σ2 is referred to as scale parameter. In the following we will chose the canonical
unitary determinant normalization advocated in [32]. Indeed, we will show that this
choice appears natural w.r.t. the geometry of the problem and offers a practical and
meaningful view for intrinsic performance analysis. Hence V belongs to the manifold
referred to as the special group ofH++

M , denoted

SH++
M =

{
V ∈ H++

M , |V| = 1
}
. (6)

Eventually, a simple way to redefine a CES distribution z ∼ CES (0,Σ, g) so that scale
and shape parameters coincide is to absorb the ambiguity in the second-order modular
variate as Q′ d

= M
√
|Σ|Q, leading to the equivalent distribution z ∼ CES (0,V, g̃),

where g̃ is appropriately set from p(Q′) and the relation in (4). Also note that some
other normalization of the shape exist [32], such as the constrained trace used in
[15]. However, these alternate normalizations often define manifolds with unknown
geodesics, which is not suited for the present intrinsic analysis.

0.2.2 Scatter and Shape estimation in CES distributions
In this section, we focus on the ubiquitous problem of estimating the scatter and
shape matrices from a sample set {zk}k∈[[1,K]] (with shortened notation {zk}), dis-
tributed as z ∼ CES (0,Σ, g) [15, 33–35]. Assuming a zero-mean CES distribution
z ∼ CES (0,Σ, g), the log-likelihood of a data set {zk} is given as:

L ({zk}|Σ, g) =
K∑

k=1

log
(
g
(
zHk Σ−1zk

))
−K log |Σ|. (7)
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The maximum likelihood estimator of the scatter matrix in this context is the solution
of the fixed point equation

Σ̂ =
1

K

K∑
k=1

ψ
(
zHk Σ̂−1zk

)
zkzHk

d
= H

(
Σ̂
)
, (8)

where ψ(t) = −φ(t) = −g′(t)/g(t). The existence and uniqueness of this solution
is subject to conditions on the density generator g and the size of the sample set {zk}
(cf. Theorems 6 and 7 of [15]). When existing, these estimators can be computed
through the fixed point iterations Σ(n+1) = H

(
Σ(n)

)
that converge to the point Σ̂

(also Theorem 6 and 7 of [15]). Note that, in practice, the true density generator may
not be known or accurately specified. In the robust estimation theory, an M -estimator
of the scatter matrix [21, 36] refers to an estimator built using a function ψ(t) that is
not necessarily linked to g in (8). Some examples ofM -estimators are given in Section
VI. These estimators are therefore not maximum likelihoods but are known for their
interesting robust and asymptotic properties [15].

An important note is that M -estimators may not be consistent in scale, due to am-
biguity discussed in section II-A and exhibited in the simulations of Section VI. A
practical way to remove this ambiguity is to focus on the shape matrix estimation by
constructing

V̂ = Σ̂/
M

√
|Σ̂|, (9)

for a given M -estimator (or MLE) of the scatter Σ̂.

0.2.3 Intrinsic Cramér-Rao bounds
For a good introduction to elementary tools of differential geometry used in this paper,
we refer the reader to the appendix of [9], as well as in the footnotes of [1]. For a more
detailed coverage of these concepts, one can refer to the standard textbooks [37–41].
The book [42] and manuscript [43] provide algorithmically-oriented introductions to
differential geometry.

The intrinsic Cramér-Rao bound extends the traditional Cramér-Rao bound for pa-
rameters living in a manifold and for an abitrary chosen Riemannian metric. Indeed,
the traditional estimation error (Euclidean distance) is defined through the difference
between the true parameter and an estimator, which is not defined intrinsically. To
deal with this issue, [1] derived a Cramér-Rao type Theorem for parameters living in a
manifold by bounding the expected intrinsic distance between an estimator and the true
parameter. Eventually, this Theorem retrieves the well-known inequality “ C < F−1

”, with C being the covariance matrix of the estimation error and F being the Fisher
Information Matrix. However, these parameters have a different definition due to the
specific nature of the considered objects. The point of this section is to briefly present
those definitions and the essential tools needed for the derivation of the contributions.
We also refer the reader to the Chapter 6 of [43] and the reference [44], which provide
good introductions to the topic.
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Theorem 1 (Fisher information metric, Theorem 1 of [1])
Let f({zk}|θ) be a family of probability density function parameterized by θ living

in a manifoldM, l = log f be the log-likelihood function, and gfim = [dl ⊗ dl] (⊗
denotes the tensor product) be the Fisher information metric. Let {Ω} be an element
of the tangent space TθM of the manifoldM at point θ. We have the relation

gfim (Ω,Ω) = −E
[

d2

dt2
l ({zk}|θ + tΩ)

∣∣∣∣
t=0

]
. (10)

Let {Ωi} be a basis TθM. The Fisher Information Matrix F is defined as

[F]i,j = gfim (Ωi,Ωj) . (11)

where gfim (Ωi,Ωj) can be obtained from (10) using a polarization formula (cf. (61)).

Definition 1 (Estimation error)
Let θ̂ be an estimator of the parameter θ ∈ M. The estimation error Xθ is given by
inverse exponential map (or logarithmic map):

Xθ = exp−1θ θ̂. (12)

Let the tangent space TθM be endowed with any metric (inner product) gθ and {Ωi}
be a basis of this space. We have the coordinate vector x(θ) with entries [x (θ)]i =
gθ (Xθ,Ωi), and the squared magnitude of estimation error is

‖x(θ)‖2F = x(θ)Hx(θ) =
∥∥∥exp−1θ θ̂

∥∥∥2
θ
= d2(θ, θ̂), (13)

where d is the distance defined w.r.t. the chosen Riemannian metric gθ.

Theorem 2 (Intrinsic Cramér-Rao Bound, Corollary 2 of [1])
Let f({zk}|θ) be a family of probability density function parameterized by θ ∈ M,
l = log f be the log-likelihood function, g = [dl ⊗ dl] be the Fisher information
metric, F be the Fisher information Matrix, ∇ be an affine connection on M, and
d be the distance associated toM and chosen Riemannian metric gθ. Assume that θ̂
is an unbiased (cf. definitions 1 and 2 of [1]) estimator of θ, then the covariance of the
estimation error exp−1θ θ̂ satisfies the matrix inequality

E
[(

exp−1θ θ̂
)(

exp−1θ θ̂
)H]

< F−1, (14)

which translates in distance as

E
[
d2
(
θ, θ̂

)]
≥ Tr

{
F−1

}
, (15)

where d corresponds to the distance associated to the chosen Riemannian metric.

Notice that intrinsic Cramér-Rao bounds in (15) are defined relatively to a Riemannian
metric to be chosen, which allows for bounding a distance (performance criterion) that
is considered to be meaningful for the addressed estimation problem. From the infor-
mation geometry [45] perspective, it is generally advocated to consider the distance
that is brought by the problem itself, i.e. distance associated to the Fisher information
metric from Theorem 1.
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0.3 Fisher information metric and natural distance in-
duced by CES distributions

In this section we study the information geometry of the likelihood (7). We derive the
Fisher Information Metric and the distance associated to this metric on both H++

M and
SH++

M . These tools will be useful for deriving a natural performance criterion and
intrinsic Cramér-Rao lower bounds in the next sections. First, we have the following
Theorem:

Theorem 3 (Fisher Information Metric for CES)
Let Ω1 and Ω2 be two vectors of the tangent space of H++

M at Σ, which is HM . The
Fisher Information Metric associated to the likelihood (7) is:

gfimΣ (Ω1,Ω2) = K gcesΣ (Ω1,Ω2) , (16)

with
gcesΣ (Ω1,Ω2) = αTr

{
Σ−1Ω1Σ

−1Ω2

}
+ βTr

{
Σ−1Ω1

}
Tr
{
Σ−1Ω2

}
,

(17)

and with coefficients α and β defined asα =

(
1−

E
[
Q2

kφ
′ (Qk)

]
M(M + 1)

)
β = α− 1.

(18)

cf. Appendix A Notice that (17) yields the classical Riemannian metric on H++
M [46]

for α = 1 and β = 0. This also corresponds to the Gaussian case covered in [1] since
α = 1 and β = 0 are obtained for the Gaussian density generator g(t) = exp(−t)
(see [29] for the calculation of these coefficients). First, we note that some necessary
conditions are to be satisfied by (17) to define a proper Riemannian metric onH++

M :

Proposition 1 (Positiveness of the Fisher Information Metric) The Fisher Information
Metric for CES (17) is a Riemannian metric onH++

M if and only if

α > 0 and α+Mβ > 0. (19)

Cf. Appendix A. Note that from the expressions α and β in (18), this condition is
directly reported on the expectation of the second-order modular variate and the density
generator g as

E
[
Q2φ2(Q)

]
> M2. (20)

In the following, we assume that α and β satisfy (19). The natural distance on
H++

M associated to the metric gcesΣ in (17) is obtained by studying the geometry of this
Riemannian manifold, which is done in Appendix A and yields:
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Theorem 4 (Distance induced by gcesΣ onH++
M )

The natural Riemannian distance onH++
M associated to the metric (17) is defined, for

all Σ1,Σ2 ∈ H++
M , as

d2ces(Σ1,Σ2) = α

M∑
i=1

log2 λi + β

(
M∑
i=1

log λi

)2

, (21)

where λi is the ith eigenvalue of Σ−11 Σ2. It can also be written

d2ces(Σ1,Σ2) = α
∥∥∥log(Σ−1/2

1 Σ2 Σ
−1/2
1 )

∥∥∥2
F

+ β
(
log
∣∣Σ−11 Σ2

∣∣)2 , (22)

Cf. Appendix A.
We now deal with SH++

M , whose tangent space at Σ is

TΣSH++
M = {Ω ∈ HM : Tr{Σ−1 Ω} = 0}. (23)

It follows that the metric (17) at Σ ∈ SH++
M becomes

gcesΣ (Ω1,Ω2) = αTr{Σ−1 Ω1 Σ−1 Ω2}, (24)

for all Ω1,Ω2 ∈ TΣSH++
M . As the geodesics on SH++

M are the same as those on
H++

M , the associated distance follows:

Corollary 1 (Distance induced by gcesΣ on SH++
M )

The natural Riemannian distance on SH++
M associated to the metric (17) is defined,

for all Σ1,Σ2 ∈ SH++
M , as

d2sp−ces(Σ1,Σ2) = α
∥∥∥log(Σ−1/2

1 Σ2 Σ
−1/2
1 )

∥∥∥2
F
. (25)

Note that dces corresponds to a scaled natural distance plus an additional term that
comes from the integration of factors in β in (17) along the geodesic. However, these
terms cannot define alternate Riemannian metric and distance by themselves, as α = 0
does not satisfy Proposition 1. On the other hand, dsp−ces corresponds to a scaled
natural distance for any β.

0.4 Intrinsic Cramér-Rao Bounds on scatter
In this Section we derive intrinsic Cramér-Rao bounds for the problem of scatter matrix
estimation in CES distributions under different metrics, hence performance bounds on
different distances. Once a distance is chosen to evaluate the performance in terms of
estimation accuracy, the Cramér-Rao bound is obtained by performing the following
steps:

a) Selecting a basis {Ωi} ofHM (the tangent space ofH++
M at Σ) that is orthonor-

mal w.r.t. the metric onH++
M that is associated to this distance.
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b) Computing the elements of the Fisher Information Matrix with this basis, ac-
cording to Theorem 1.

c) Inverting the FIM and applying Theorem 2.

These operations correspond to the steps described in the frame “Computation of the
intrinsic FIM and CRB” in [1].

0.4.1 Euclidean Metric
We first recall that the Euclidean metric forH++

M and associated distance are:

gEucl (Ω,Ω) = Tr
{
Ω2
}
, (26)

d2Eucl (Σ1,Σ2) = ‖Σ1 −Σ2‖2F . (27)

Consider the following basis of the tangent space of H++
M at Σ, orthonormal w.r.t. to

the inner product gEucl:

1. ΩEucl
ii is an n by n symmetric matrix whose ith diagonal element is one, zeros

elsewhere

2. ΩEucl
ij is an n by n symmetric matrix whose ijth and jith elements are both

2−1/2, zeros elsewhere.

3. Ωh−Eucl
ij is an n by n Hermitian matrix whose ijth element is 2−1/2

√
−1, and

jith element is −2−1/2
√
−1, zeros elsewhere (i < j).

To shorten notations, we simply denote this basis {ΩEucl
i }, for i ∈ [[1,M2]], where

the M2 elements are corresponding to the Ω
{h}
ij that are ordered following items 1) 2)

3). The distance between an estimator and its true value is obtained as the summed
squared errors on the coordinates in this basis.

Theorem 5 (Euclidean Cramér-Rao bound on the scatter)
Let Σ̂ be an estimator of the scatter matrix built from a data set {zk} i.i.d. distributed
according z ∼ CES (0,Σ, g). The Cramér-Rao bound on the Euclidean distance be-
tween Σ̂ and Σ is

E
[
d2Eucl

(
Σ̂,Σ

)]
≥ Tr

{
F−1Eucl

}
, (28)

with
[FEucl]i,j = Kα Tr

{
Σ−1ΩEucl

i Σ−1ΩEucl
j

}
+Kβ Tr

{
Σ−1ΩEucl

i

}
Tr
{
Σ−1ΩEucl

j

}. (29)

Let {ΩEucl
i }i∈1...M2 be the canonical basis, and gfimΣ be the Fisher information metric

defined in Theorem 3. The result is a direct application of Theorem 2.
Remark that this corresponds well to the Euclidean Cramér-Rao bounds obtained

for several distributions in [26–29]. Also notice that we retrieve the same result as
Theorem 5 of [1] for the special case of Gaussian distribution, i.e. α = 1 and β = 0.
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0.4.2 Natural Metric
Recall that the natural metric and associated distance are

gnatΣ (Ω,Ω) = Tr
{(

Σ−1Ω
)2}

, (30)

d2nat (Σ1,Σ2) =
∥∥∥log(Σ−1/2

1 Σ2 Σ
−1/2
1 )

∥∥∥2
F
. (31)

An orthonormal basis for the tangent space ofH++
M at Σ w.r.t. gnatΣ can be obtained by

coloring the canonical basis of previous section as:

Ωnat
i = Σ

1/2ΩEucl
i Σ

1/2. (32)

We denote this basis {Ωnat
i }i∈1...M2 . The distance between an estimator and the true

scatter matrix is obtained as the summed squared errors on the coordinates in this basis
(see (84) to (87) in [1]). This distance is subject to the following bound:

Theorem 6 (Natural Cramér-Rao bound on the scatter)
Let Σ̂ be an estimator of the scatter matrix built from a data set {zk} i.i.d. distributed
according z ∼ CES (0,Σ, g). The Cramér-Rao bound on the natural distance between
Σ̂ and Σ is

E
[
d2nat

(
Σ̂,Σ

)]
≥ M2 − 1

Kα
+ (K(α+Mβ))−1. (33)

Let {Ωnat
i }i∈1...M2 be the tangent space basis defined in (32), and gfimΣ be the Fisher

information metric defined in Theorem 3. Notice that Ωnat
i = Σ1/2ΩEucl

i Σ1/2, which
simplifies the entries of the Fisher information matrix as:

gfimΣ (Ωi,Ωj) = KαTr
{
ΩEucl

i ΩEucl
j

}
+KβTr

{
ΩEucl

i

}
Tr
{
ΩEucl

j

}
.

(34)

Hence, from the relations

Tr
{
ΩEucl

i ΩEucl
j

}
= δi,j , (35)

and

Tr
{
ΩEucl

i

}
Tr
{
ΩEucl

j

}
=

{
1 if (i, j) ∈ [[1, n]]2

0 otherwise,
(36)

we obtain the Fisher information matrix as

Fnat = KαIM2 +Kβ

[
1M×M 01×M(M−1)

0M(M−1)×1 0M(M−1)×M(M−1)

]
,

which is expressed as Fnat = KαI + KMβvfimvH
fim with unitary vector vfim =

1/
√
M
[

1M | 0M(M−1)
]
, i.e. vH

fimvfim = 1. Hence F−1nat can be obtained by the
Sherman-Morrison formula, or its vector of eigenvalues can be directly identified as
K−1

[
(α+Mβ)−1, α−1, . . . , α−1

]
and summed to obtain its trace. Theorem 2 is

applied to conclude.
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0.4.3 CES-Fisher Information Metric
Recall that the CES-Fisher information metric and associated distance are given in (17)
and (21) respectively. We denote {Ωces

i }i∈1...M2 , a basis that is orthonormal w.r.t. to
the metric (inner product) gcesΣ . Closed-form expressions of this basis are not needed
for the developments, but it can be constructed using Gram-Schmidt orthogonalization
process. The distance between an estimator and the true scatter matrix is obtained as
the summed squared errors on the coordinates in this basis. This distance leads to the
following bound:

Theorem 7 (CES-Fisher Cramér-Rao bound on the scatter)
Let Σ̂ be an estimator of the scatter matrix built from a data set {zk} i.i.d. distributed
according z ∼ CES (0,Σ, g). The Cramér-Rao bound on the CES-Fisher distance
between Σ̂ and Σ is

E
[
d2ces

(
Σ̂,Σ

)]
≥M2/K. (37)

Let {Ωces
i }i∈1...M2 be the tangent space basis defined, orthonormal w.r.t. to the metric

(inner product) gcesΣ . Let gfimΣ be the Fisher information metric defined in Theorem
3. Notice that gfimΣ = KgcesΣ , so the Fisher Information Matrix is, by construction
(orthonormality) equal to Fces = KIM2 . The trace of its inverse is therefore M2/K
and the proof is concluded by applying Theorem 2. Notice that in the Gaussian case,
Theorems 7 and 6 become identical since α = 1 and β = 0.

0.5 Intrinsic Cramér-Rao Bounds on shape
In this section we derive Intrinsic Cramér-Rao bounds for the problem of shape ma-

trix estimation in CES distributions under different metrics, hence performance bounds
on different distances. Overall, we follow the same steps a), b) and c) as described in
the beginning of Section IV. However, the shape matrix parameter lives in the Man-
ifold SH++

M , so the considered tangent space has to be modified accordingly. At the
point Σ, the tangent space of SH++

M is defined in (23).

0.5.1 Euclidean Metric
First recall that the Euclidean metric and distances are given respectively in (26) and
(27). A practical alternate formulation is that TΣSH++

M is the complementary of the
normal space at Σ, denoted NΣSH++

M . When using gEucl in (26) as inner product,
this space is defined as

NΣSH++
M =

{
λΣ−1, λ ∈ R

}
, (38)

so TΣSH++
M corresponds to the space of symmetric matrices deprived from the line

λΣ−1, λ ∈ R. Therefore, the main trick to obtain an orthonormal basis of TΣSH++
M

will be to construct one of HM where λΣ appears as the first element. Extracting the
M2 − 1 other elements of this set will lead to the desired basis.

11



Consider the basis
{
ΩEucl

i

}
defined in Section IV-A, augmented with the element

Σ−1 as
{
Σ−1,ΩEucl

1 , . . . ,ΩEucl
M2

}
. Then, applying a Gram-Schmidt orthonormaliza-

tion process with the scalar product defined in (26) on this set leads to
{
λΣ−1,Ωsp−Eucl

1 , . . . ,Ωsp−Eucl
M2−1 ,0

}
(with appropriate normalization λ). Now, extractingM2−1 elements (excluding λΣ−1

and 0) leads to an orthonormal basis of TΣSH++
M w.r.t. gEucl denoted{

Ωsp−Eucl
1 , . . . ,Ωsp−Eucl

M2−1

}
. (39)

Theorem 8 (Euclidean Cramér-Rao bound on the shape)
Let V̂ be an estimator of the shape matrix V ∈ SH++

M built from a data set {zk}
i.i.d. distributed according z ∼ CES (0,Σ, g) with Σ = σ2V and equivalent distri-
bution z ∼ CES (0,V, g̃) (cf. section II-A). The Cramér-Rao bound on the Euclidean
distance between V̂ and V is

E
[
d2Eucl

(
V̂,V

)]
≥ Tr

{
F−1sp−Eucl

}
, (40)

with
[Fsp−Eucl]i,j = KαTr

{
V−1Ωsp−Eucl

i V−1Ωsp−Eucl
j

}
. (41)

for i, j ∈ [[1,M2 − 1]] and with α from (18) using g̃.

Let {Ωsp−Eucl
i }i∈1...M2−1 be the basis in (39), and gfimΣ be the Fisher information

metric defined in Theorem 3. The result is a direct application of Theorem 2. Note that
the terms in β are all zero due to the definition of the tangent space TΣSH++

M in (23).

Note that this theorem allows to compute the Cramér-Rao lower bound on the shape
matrix parameter in a practical way and without requiring a subtle parameterization that
ensures unit determinant. This is, to the best of our knowledge, a new result even for
the Euclidean setting.

0.5.2 Natural and CES-Fisher Information Metric
First, recall that the natural metric and distances are given respectively in (30) and
(31). Also note that from Corollary 1, the CES-Fisher distance corresponds to a scaled
natural distance on the space SH++

M . Hence the following analysis holds for both
Natural and CES-Fisher distances up to a scale factor in definition of the estimation
error. When using gnatΣ in (30) as inner product, the normal space at Σ is defined as

NΣSH++
M = {λΣ, λ ∈ R} . (42)

To obtain an orthonormal basis of the tangent space, we follow the steps of Section
V-A, except that Σ is used to augment the initial basis, and gnatΣ in (30) is used as
inner product to perform the Gram-Schmidt orthonormalization process. This leads to
an orthonormal basis of TΣSH++

M w.r.t. gnatΣ denoted{
Ωsp−nat

1 , . . . ,Ωsp−nat
M2−1

}
. (43)

12



Theorem 9 (Natural Cramér-Rao bound on the shape)
Let V̂ be an estimator of the shape matrix V ∈ SH++

M built from a data set {zk}
i.i.d. distributed according z ∼ CES (0,Σ, g) with Σ = σ2V and equivalent distri-
bution z ∼ CES (0,V, g̃) (cf. section II-A). The Cramér-Rao bound on the natural
Riemannian distance between V̂ and V is

E
[
d2nat

(
V̂,V

)]
≥ M2 − 1

Kα
(44)

with α from (18) using g̃.

Let {Ωsp−nat
i } be the basis in (43), and gfimΣ be the Fisher information metric defined

in Theorem 3. The entries of the Fisher Information Matrix are

gfimΣ

(
Ωsp−nat

i ,Ωsp−nat
j

)
= Kα δi,j (45)

due to the orthonormality of {Ωsp−nat
i } w.r.t. gnat (the terms in α), and thanks to

the fact that terms in β are all zero from the definition of the tangent space TΣSH++
M

in (23). The Fisher information matrix is therefore Fsp−nat = KαIM2−1 whose the
trace of inverse reads directly. The proof is concluded by applying Theorem 2.

0.6 Simulations

0.6.1 Student t-distribution
In this section, the theoretical results of previous sections will be illustrated for the
multivariate Student t-distribution. The multivariate Student distribution with d ∈ N∗
degree of freedom is obtained for the CES representation z ∼ (0,Σ, gd) with

gd(t) =
(
1 + d−1t

)−(d+M)
, (46)

and the second-order modular variate is distributed as Q d
= CX 2

M
/CX 2

d/d
where CX 2

x

denotes the Chi-squared distribution with x degrees of freedom. Hence Q follows a
scaled F-distribution. We have

φ(t) = −d+M

d+ t
, (47)

and the expectation

E
[
Q2φ2 (Q)

]
=

(d+M)M(M + 1)

d+M + 1
, (48)

leading to the coefficients of the metric gcesΣ in (17) as
α =

d+M

d+M + 1

β =
−1

d+M + 1
.

(49)

Notice that the condition of Proposition 1, α + Mβ > 0, is valid ∀d ∈ N∗, so the
Fisher Information Metric is always properly defined for this distribution.
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0.6.2 Studied M -estimators
We consider the following estimators of the scatter:

• SCM: the usual Sample Covariance Matrix, defined as Σ̂SCM = K−1
∑K

k=1 zkzHk .

• MLE: The estimator defined in (8) using the appropriate function ψ(t) = −φ(t),
with φ in (47).

• Mismatched MLE: the M -estimator identically to the MLE, except that the used
parameter d different from the true parameter. Here, d = 10 is set regardless of
the underlying distribution.

• Tyler’s M -estimator, defined as in (8) with ψ(t) = M/Kt. Note that this es-
timator is unique up to a scaling factor so it will be considered only for shape
estimation.

For all this estimates, the corresponding estimators of the shape are build using the
normalization in (9).

0.6.3 Simulations results
In this section, the scatter matrix is built as a Toeplitz matrix [ΣT ]i,j = ρ|i−j| with
ρ = 0.9

√
1/2 (1 + i). This matrix is then normalized so that the scatter and shape

matrices are equal in this setting. For samples distributed as z ∼ CES (0,ΣT , gd), we
study the performance of the different estimators of scatter and shape versus the number
of samples K (evaluated on 104 Monte-Carlo simulations). These performances are
evaluated through the mean squared distances corresponding to gEucl, gnatΣ and gcesΣ

and are compared to the corresponding Cramér-Rao lower bounds from Section IV.
Figure 1 displays the results on scatter matrix estimation for a Student t-distribution

with d = 100 degrees of freedom. Notice that in this case the data almost follow a
Gaussian distribution (it is usually admitted that d > 30 allows to assume Gaussianity
of the data). In this setting Σ̂MLE ' Σ̂SCM so these estimators reach similar perfor-
mances. For all performance measurements (different distance), the mismatched MLE
appears not efficient at high sample support, which is due to the bias induced on the
scale. Also, α ' 1 and β ' 0, so gnatΣ and gcesΣ generate almost identical distances
and corresponding bounds, as observed in Figure 1. Interestingly, as noted in [1], these
performance criteria show that the studied estimators are not efficient at low sample
support. The natural metric is able to reflect some empirical results in terms of appli-
cation (the Sample Covariance Matrix is known to provide an inaccurate estimation at
low sample support), while the Euclidean metric is apparently not, i.e. the Cramér-Rao
bound and MSE on the Euclidean metric appear non-informative here.

Figure 2 displays the same results for a Student t-distribution with d = 2 degrees of
freedom. Here, the distribution is heavy tailed and the SCM, as well as the mismatched
MLE, fail to provide an accurate estimator of the scatter matrix, as observed in Figure
2. In this case, the study of the Euclidean metric reveals that the Maximum Likelihood
Estimator is not efficient at low sample support, however it converges to the bound as
K grows. We notice that the convergence towards this regime appears to be slower
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Figure 1: (from top to bottom) Euclidean, Natural, CES-Fisher CRLB and mean
squared distance scatter matrix for t-distribution versus K/M . M = 10, d = 100
(close to Gaussian case).

through the study of the natural and CES-Fisher metric, which may be an interesting
point in order to quantify the number of samples needed to achieve good performance
in terms of application purpose.

Figures 3 and 4 display the results for the problem of shape matrix estimation for
the same configurations as in Figures 1 and 2. The interest of this setting and the de-
rived intrinsic Cramér-Rao bounds is that they allow to draw a meaningful comparison
of different M -estimators using both Euclidean and Natural distance, regardless of the
scaling ambiguities inherent to CES distributions. Such comparison is indeed relevant
when the process of interest is not sensitive to scale (e.g. for adaptive filtering). Here,
both distance reveal that all the studied shape matrix estimators are not efficient at low
sample support. We also notice that M -estimators such as the mismatched MLE and
Tyler’s estimator appear here close to the MLE in terms of performance for the prob-
lem of shape estimation. However, this is not the case for the SCM if the distribution
is not Gaussian, as seen in Figure 4.
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Figure 2: (from top to bottom) Euclidean, Natural, CES-Fisher CRLB and mean
squared distance on scatter matrix for t-distribution versus K/M . M = 10, d = 3.
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Figure 3: (from top to bottom) Euclidean and Natural CRLB and Mean Squared Dis-
tance on shape versus K/M . M = 10, d = 100 (close to Gaussian case).

0.7 Conclusion
This paper derived intrinsic Cramér-Rao bounds for the problem of scatter and shape
matrices estimation from samples following a CES distribution. The intrinsic approach
allowed to obtain performance bounds on three different distances (Euclidean, natural
Riemannian and CES-Fisher). An interesting point is that the study of these three re-
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Figure 4: (from top to bottom) Euclidean and Natural CRLB and Mean Squared Dis-
tance on shape versus K/M . M = 10, d = 3.

sults can reveal hidden properties of estimators. Therefore, the obtained Cramér-Rao
bounds are useful tools for a complete analysis. In this scope, the proposed results
on shape matrices allow to draw performance bounds for the comparison of all M -
estimators, regardless of scaling ambiguities inherent to CES distributions. On a side
note, the Fisher-CES metric presented in this paper allows to build generalized Rieman-
nian distances while preserving the natural geodesic of S++

M . This tool seems therefore
interesting for building regularized estimators in the vein of [22–25].

0.8 Proofs of Section III

Proof of Theorem 3
The Fisher Information Metric is obtained according to Theorem 1 as

gfimΣ (Ω,Ω) = −E
[

d2

dt2
L ({zk}|Σ + t∂Ω, g)

∣∣∣∣
t=0

]
. (50)

First, recall that the log-likelihood of the sample set is

L ({zk}|Σ, g) =

K∑
k=1

log
(
g
(
Tr
{
Σ−1Zk

}))
−K log |Σ|, (51)

where Zk = zkzHk . We have the following Taylor expansions of order two around Σ:

log |Σ + tΩ| = log |Σ|+Tr
{
Σ−1tΩ

}
−

1

2
Tr
{(

Σ−1tΩ
)2}

+ . . . (52)

and
log
(
g
(
Tr
{
(Σ + tΩ)−1 Zk

}))
= log

(
g
(
Tr
{
Σ−1Zk

}))
− Tr

{
Σ−1tΩΣ−1Zk

}
ψ
(
Tr
{
Σ−1Zk

})
+Tr

{(
tΩΣ−1

)2
ZkΣ−1

}
ψ
(
Tr
{
Σ−1Zk

})
+

1

2
Tr2

{
Σ−1tΩΣ−1Zk

}
ψ′
(
Tr
{
Σ−1Zk

})
+ . . .

(53)
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By removing the higher order terms we obtain
d2

dt2
L ({zk}|Σ + tΩ)

∣∣∣∣
t=0

= KTr
{(

ΩΣ−1
)2}

+ 2

K∑
k=1

Tr
{(

ΩΣ−1
)2

ZkΣ−1
}
φ
(
Tr
{
Σ−1Zk

})
+

K∑
k=1

Tr2
{
Σ−1ΩΣ−1Zk

}
φ′
(
Tr
{
Σ−1Zk

})
.

(54)

In order to compute the expectations, we recall that Zk = zkzHk and that zk has the

stochastic representation zk
d
=
√
Qk Σ1/2 uk. This allows us some simplifications

since Tr
{
Σ−1Zk

}
= Qk, uH

k uk = 1, and since that uk and Qk are independent
(allowing to split the expectations). Hence we have for the first term:

E
[
Tr
{(

ΩΣ−1
)2

ZkΣ−1
}
φ
(
Tr
{
Σ−1Zk

})]
= E

[
Tr
{

ΣH/2Σ−1
(
ΩΣ−1

)2
Σ1/2ukuH

k

}]
E [Qkφ (Qk)]

= −Tr
{(

ΩΣ−1
)2}

,

(55)

where we used E
[
ukuH

k

]
= IM/M (since uk ∼ U(CSM )), and (4) to obtain the

result
E [Qkφ (Qk)] = −M. (56)

The second expectation is obtained by the same method as
E
[
Tr2

{
Σ−1ΩΣ−1Zk

}
φ′
(
Tr
{
Σ−1Zk

})]
= E

[(
uH
k Σ−H/2ΩΣ−1/2uk

)2]
E
[
Q2

kφ
′ (Qk)

]
=

E
[
Q2

kφ
′ (Qk)

]
M(M + 1)

(
Tr2

{
ΩΣ−1

}
+Tr

{(
ΩΣ−1

)2})
,

(57)

where we used the relation from [29], giving

E
[(

uH
k Buk

)2]
=

Tr
{
B2
}
+Tr2 {B}

M(M + 1)
, (58)

for an arbitrary constant matrix B and uk ∼ U
(
CSM

)
. Eventually, by plugging (55)

and (57) into (50) and (54), the Fisher Information Metric is given as:

gfimΣ (Ω,Ω) = KαTr
{(

Σ−1Ω
)2}

+KβTr2
{
ΩR−1

}
, (59)

with coefficients α and β defined in (18). Notice that β = α− 1. Also, some manipu-
lations with φ′(t) = g′′(t)/g(t)− φ2(t), (4) and (56) allow to show that

M(M + 1)− E
[
Q2

kφ
′ (Qk)

]
= E

[
Q2

kφ
2 (Qk)

]
, (60)

which is consistent with the coefficients obtained in the parametric case [29]. To obtain
the metric we now use the polarization formula

gfimΣ (Ω1,Ω2) =
1

4

[
gfimΣ (Ω1 + Ω2,Ω1 + Ω2)

−gfimΣ (Ω1 −Ω2,Ω1 −Ω2)
]
,

(61)

which, after some expansions and simplifications leads to the conclusion of the proof.
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Proof of Proposition 1
It is readily checked that for all Σ ∈ S++

M the function (17) is symmetric and bilinear.
It remains to determine whether it is positive-definite. Let Σ ∈ S++

M and Ω ∈ SM , and
let U Λ UT be the eigenvalue decomposition of Σ

−1/2 Ω Σ
−1/2. One can first check

that we need α > 0 because the term on the right can be canceled for Ω different from
0. We have

gcesΣ (Ω,Ω) = αTr(Σ−1 Ω Σ−1 Ω) + β
(
Tr(Σ−1 Ω)

)2
= αTr(U Λ2 UT ) + β

(
Tr(U Λ UT )

)2
= αTr(Λ2) + β (Tr(Λ))

2
.

(62)

One can notice that Tr(Λ2) = ‖diag(Λ)‖22 and (Tr(Λ))
2 ≤ ‖diag(Λ)‖21, where

diag(·) returns the vector of diagonal elements of its argument, and ‖·‖2 and ‖·‖1
denote the L2 and L1 norms, respectively. From the Cauchy-Schwarz inequality, we
have ‖diag(Λ)‖21 ≤ M‖diag(Λ)‖22. It follows that gcesΣ (Ω,Ω) > 0 if α +Mβ > 0,
completing the proof.

Proof of Theorem 4
First, the directional derivative of gcesΣ (Ω1,Ω2) in the direction Ω3, where Σ ∈ S++

M

and Ω1,Ω2,Ω3 ∈ SM is

D gcesΣ (Ω1,Ω2)[Ω3] = gcesΣ (DΩ1[Ω3],Ω2)

+ gcesΣ (Ω1,DΩ2[Ω3])

− β Tr(Σ−1 Ω3 Σ−1 Ω1) Tr(Σ
−1 Ω2)

− β Tr(Σ−1 Ω1) Tr(Σ
−1 Ω3 Σ−1 Ω2)

− αTr(Σ−1(Ω3 Σ−1 Ω1 +Ω1 Σ−1 Ω3)Σ−1 Ω2). (63)

It then follows from the Koszul formula (equation (5.11) in [42]) that the Levi-Civita
connection ∇ of Ω2 in the direction Ω1 on S++

M endowed with metric (17) which is
defined for all Σ ∈ S++

M

∇Ω1
Ω2 = DΩ2[Ω1]− sym(Ω2 Σ−1 Ω1), (64)

where sym(·) is the operator that returns the symmetrical part of its argument. The
Levi-Civita connection is the same as for the classical Riemannian metric in our case
and we therefore have the same geodesics, which can be found for example in [46].
They can be characterized in two different (but equivalent) manners: the geodesics γ
on S++

M are defined for all Σ ∈ S++
M and Ω ∈ SM as

γ(t) = Σ
1/2 exp(tΣ

−1/2 Ω Σ
−1/2)Σ

1/2, (65)

where exp(·) denotes the matrix exponential. Equivalently, we can define the geodesic
γ between Σ1 and Σ2 in S++

M as

γ(t) = Σ
1/2
1 (Σ

−1/2
1 Σ2 Σ

−1/2
1 )t Σ

1/2
1 , (66)
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where (·)t = exp(t log(·)) denotes the matrix power function defined through the ma-
trix exponential and logarithm. Furthermore, one can check that the metric (17) is
invariant by congruence, i.e.

gcesU Σ UT (U Ω1 UT ,U Ω2 UT ) = gcesΣ (Ω1,Ω2), (67)

for all Σ ∈ S++
M , Ω1,Ω2 ∈ SM and invertible matrix U. Since we have the same

geodesic and the congruence invariance property, the proof is completed by using the
same steps given in [41] for the proof of the Riemannian distance on S++

M equipped
with the classical Riemannian metric (α = 0 and β = 1).
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