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Abstract—This letter investigates Bayesian bounds on the
mean-square error (MSE) applied to a data-aided carrier es-
timation problem. The presented bounds are derived from a
covariance inequality principle: the so-called Weiss and Weinstein
family. These bounds are of utmost interest to find the funda-
mental MSE limits of an estimator, even for critical scenarios (low
signal-to-noise ratio and/or low number of observations). In a
data-aided carrier estimation problem, a closed-form expression
of the Weiss–Weinstein bound (WWB) that is known to be the
tightest bound of the Weiss and Weinstein family is given. A
comparison with the maximum likelihood estimator and the other
bounds of the Weiss and Weinstein family is given. The WWB is
shown to be an efficient tool to approximate this estimator’s MSE
and to predict the well-known threshold effect.

Index Terms—Carrier frequency estimation, estimators perfor-
mance, Weiss and Weinstein family bounds.

I. INTRODUCTION

MINIMAL bounds are generally used to find the ultimate
estimation performance in term of mean-square error

(MSE). Consequently, they are a useful benchmark in order to
check the accuracy of an estimator. This topic is of interest in
many signal processing fields such as spectral analysis, array
processing, or digital communications.

Two kinds of lower bounds on the MSE have been derived
depending on the parameters assumptions. When the unknown
parameters are assumed to be deterministic, bounds such as the
well-known Cramér–Rao bound , the Bhattacharyya bound [1],
the Barankin bound [2], and the Abel bound [3] have been pro-
posed. Some of these bounds have been widely used to predict
the threshold phenomena of an estimator (see, e.g., [4]–[6]). In-
deed, in an estimation problem, when the parameters have a fi-
nite support, it appears as three distinct MSE areas [7]. At a high
number of observations and/or high signal-to-noise ratio (SNR),
the estimator MSE is small and the area is called asymptotic.
When the scenario becomes critical, i.e., when the number of
observations and/or the SNR decrease, the estimator MSE in-
creases dramatically due to the outliers effect and the area is
called threshold area. Finally, when the number of observations
and/or the SNR is weak, the estimator is hugely corrupted by
the noise and becomes a quasi-uniform random variable on the
parameters support. This last area is called the no information
region. The Cramér–Rao bound is only used in the asymptotic
area and is not able to handle the threshold phenomena (i.e.,
when the performance breakdown appears). On the other hand,
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bounds such as Barankin or Abel bound are able to predict this
threshold. However, the drawback of the deterministic bounds
is that they do not take into account the support of the parame-
ters, and consequently, they cannot give the fundamental limits
of an estimator in terms of MSE over all the three areas.

To fill this lack, when the parameters are assumed to
be random, other bounds have been derived: the so-called
Bayesian bounds. These bounds take into account the support
of the parameters throughout an a priori probability density
function. Consequently, these bounds can give the fundamental
limits in terms of MSE over all the three aforementioned areas
and have also been widely used in the literature (see, e.g.,
[8]–[10]).

The Bayesian bounds can be decomposed into two subfam-
ilies: the Ziv and Zakaï family, where the MSE is connected
to the error probability of a binary hypothesis testing problem,
and the Weiss and Weinstein family, which derives from a
”covariance inequality principle.” The Ziv and Zakaï family
includes the Ziv–Zakaï bound [11], the Bellini–Tartara bound
[12], the Chazan–Zakaï–Ziv bound [13], and the Bell–Stein-
berg–Ephraim–VanTrees bound [14]. The Weiss and Weinstein
family includes the Bayesian Cramér–Rao bound (BCRB) [7],
the Bayesian Bhattacharyya bound [7], the Bobrovsky–Zakaï
bound (BZB) [15], the Bobrovsky–MayerWolf–Zakaï bound
[16], the Bayesian Abel bound (BAB) [17], and the Weiss–We-
instein bound (WWB) [18]. This letter focuses on this latest
family and more particularly on the Weiss–Weinstein bound,
which is known to be the tightest bound of the Weiss and
Weinstein family [19].

The goal here is to derive a closed-form expression of the
WWB bound in the context of data-aided carrier estimation
problem. Indeed, in digital communications, one of the key
points is to estimate the carrier frequency in order to accurately
recover the transmitted symbols. In practice, this estimation
is performed by using a short training sequence of symbols
that is known (data-aided) by the receiver. Some deterministic
bounds have already been applied to this problem: e.g., the
Barankin bound [20], and the Abel bound [21]. To the best of
our knowledge, the bounds of the Weiss and Weinstein family
have never been applied in this context. A comparison with the
maximum likelihood (ML) estimator and the other bounds of
the Weiss and Weinstein family is given. The WWB is shown
to be an efficient tool to approximate these estimation MSEs
and to predict the threshold effect.

II. PROBLEM SETUP

We consider a linearly modulated signal, obtained by ap-
plying a known (data-aided context) complex-valued data
symbol sequence taken from a unit energy constellation to a
square-root Nyquist transmit filter. This signal is transmitted
over an additive white Gaussian noise (AGWN) channel. The
resulting noisy signal is applied to a receiver filter, matched to
the transmit filter. The receiver filter output signal is sampled

1070-9908/$25.00 © 2007 IEEE



284 IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 4, APRIL 2007

at the correct decision instants, which yields to the following
observation model:

(1)

where is the th noisy observation. The observations are as-
sumed to be independent. is the
known data symbol sequence. is a sequence of i.i.d, cir-
cular, zero-mean complex Gaussian noise variable with a known
variance . The SNR is equal to . is the carrier phase and
is assumed to be known and compensated for (or that ).
The unknown real parameter cor-
responds to the carrier frequency offset. The carrier frequency
offset is typically due to the transmitter and receiver oscillators
drift and is a random variable with an a priori probability den-
sity function assumed to be Gaussian with mean and
variance

(2)

Assuming independent observations, the likelihood of the
vector , with , is given by

(3)

Finally, the joint density probability function of the observa-
tions and of the parameter is denoted .

III. WEISS–WEINSTEIN BOUND

In this section, the WWB is derived for the data-aided carrier
estimation problem, and an optimization in terms of computa-
tional cost is provided.

A. Weiss–Weinstein Bound Derivation

The WWB checks the following inequality:

WWB (4)

where

is

the global MSE. Note that, contrary to the deterministic
bounds, no assumptions are made on the estimator , e.g.,

can be biased.
The general form of the WWB is given by [18]

WWB (5)

where , where is chosen on the parameter support
that will be approximated by in our case, and where

is the semi-invariant moment generating function gen-
erally used to bound the probability of error in binary hypothesis
testing problems and given by

(6)

The double integral in (6) can be written as follows:

(7)

Let us set . With (3),
we have (8), shown at the bottom of the page.

Let us set

(9)

(10)

The term is then equal to

(11)

Note that Then

(12)

The right-hand side of (12) is equal to the term in the expo-
nential of (8). Consequently, we have

(13)

where . Then

(14)

which is independent of . Consequently, we have

(15)

(8)
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With (2), we have

(16)

where the integral is obtained by
[22, p. 355, Eqn. (BI((28))](1).

Finally, we have (17), shown at the bottom of the page.
Then, the closed-from expression of for the observa-

tion model (1) is given by

(18)

Finally, let us set SNR
, where SNR . By using (18) into (5), the

WWB becomes as in (19), shown at the bottom of the page.

B. Weiss-Weinstein Bound Computational Cost Optimization

This bound needs to be optimized over and . This leads to
a more important computational cost than the other bounds of
the Weiss and Weinstein family—the BCRB, the BZB, or the
BAB—for which we remind the closed-form expressions [19]

SNR

SNR

SNR

(20)

No optimization is required for the BCRB computation, and
an optimization over only one point is required for the BZB and
the BAB. Consequently, the WWB will have a higher computa-
tional cost than these bounds. Here, three ways concerning the
WWB computational cost reduction are presented.

1) As previously stated, is chosen on the parameter sup-
port that is approximated by . This support can be

reduced to since the function (20) is even with respect
to .

2) As proposed by Weiss and Weinstein in [18], it is some-
times a good choice to put . This approximation is in-
tuitively justified by the fact that the WWB tends to the BZB
(which is known to be weaker than the WWB [19]) when tends
to zero or one. If we set , the WWB is modified as in
(21), shown at the bottom of the page. The resulting bound has
approximately the same computational cost as the BZB and the
BAB.

3) The tightest WWB is given by an optimization over the test
point on the parameter support. For lower bounds obtained by
an optimization over test points, as the Barankin bound or the
WWB, it is known that the optimum choices of are related to
the ambiguity function of the problem (and consequently to the
carrier signal properties). Indeed, the value of the test points that
maximizes the bound are those for which the ambiguity function
takes local maxima (see, e.g., [5], [10], [21], and ).

IV. SIMULATION RESULTS

This section examines the relevance of the derived bounds
for predicting the MSE and the SNR threshold in the data-aided
frequency estimation problem. For that purpose, the empirical
global MSE of the ML estimator is considered. The ML esti-
mator is given by

(22)

and the global MSE of the ML estimator is given by

(23)

where corresponds to the local MSE

(24)

The simulation is performed with a QPSK pilot sequence that
contains symbols.

(17)

WWB= (19)

SNR

SNR
(21)
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Fig. 1. ML estimator empirical global MSE, BCRB, BZB, and WWB versus
SNR. QPSK modulation with N = 20 observations.

Fig. 1 superimposes the global MSE of the ML estimator
evaluated over 1000 Monte Carlo trials, the BCRB, the BZB,
the BAB (20), the WWB obtained by (19), and the WWB ob-
tained by (21). The BAB is close to the BZB. This figure shows
the threshold behavior of the ML estimator when the SNR de-
creases. The WWBs obtained by numerical evaluation of (19)
and (21) are the same; therefore, is the optimum value
in this problem. Unfortunately, no sound proof that this result is
true in general is available in the literature. The WWB bounds
provide a better prediction of the MSE in comparison with the
BZB. The WWB threshold value provides a good approxima-
tion of the effective SNR at which the ML estimator experiences
the threshold behavior.

V. CONCLUSION

In this letter, a closed-form expression of the WWB is
proposed in the data-aided carrier frequency framework. This
bound is shown to be a good tool in order to predict the ultimate
performance of an estimator in terms of MSE for any SNR and
exhibits tight results in comparison with the other bounds of
the Weiss and Weinstein family.
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