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A Cramér-Rao Bound Characterization of the
EM-Algorithm Mean Speed of Convergence
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Abstract—This paper deals with the mean speed of convergence
of the expectation-maximization (EM) algorithm. We show that
the asymptotic behavior (in terms of the number of observations)
of the EM algorithm can be characterized as a function of the
Cramér-Rao bounds (CRBs) associated to the so-called incomplete
and complete data sets defined within the EM-algorithm frame-
work. We particularize our result to the case of a complete data
set defined as the concatenation of the observation vector and a
vector of nuisance parameters, independent of the parameter of
interest. In this particular case, we show that the CRB associated
to the complete data set is nothing but the well-known modified
CRB. Finally, we show by simulation that the proposed expression
enables to properly characterize the EM-algorithm mean speed of
convergence from the CRB behavior when the size of the observa-
tion set is large enough.

Index Terms—Convergence of numerical methods, iterative
methods, maximum-likelihood estimation.

I. INTRODUCTION

SINCE its first statement by Dempster, Laird, and Rubin [1],
the expectation-maximization (EM) algorithm has become

a popular numerical method to compute maximum-likelihood
(ML) estimates, see, e.g., [2] and references therein. Among the
reasons of its success, its low complexity of implementation and
its robustness are usually pointed out [2]. The main drawback of
the EM algorithm is however its speed of convergence which, in
some situations, may be extremely slow. In their seminal paper,
Dempster, Laird, and Rubin [1] showed that the EM algorithm
exhibits a linear speed of convergence, with a rate of conver-
gence obtained from the information matrices associated to the
missing and complete data sets. More recently, some authors [3],
[4] have given further insights into the EM-algorithm conver-
gence. In particular, in [3], [4], the authors emphasize that the
EM algorithm may locally achieve quasi-Newton behavior in
some specific situations.

In this paper, we address1 the problem of the characterization
of the EM-algorithm mean speed of convergence. We derive an
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expression relating the asymptotic (in terms of number of ob-
servations) mean speed of convergence of the EM algorithm to
the Cramér-Rao bounds (CRBs) associated to the incomplete
and complete data sets. In particular, we emphasize that, as long
as the number of observation is large, the proposed expression
enables to have a good intuition of the EM-algorithm speed of
convergence simply by looking at the CRB behavior. The paper
is organized as follows. In Section II, we recall the basics of
the EM algorithm and we give the general expressions of the
CRB and modified CRB (MCRB) [6]. Section III is the core of
the paper: we derive an expression relating the EM-algorithm
mean speed of convergence to the CRBs associated to the in-
complete and complete data estimation problems. In a first part,
we show that the proposed CRB-based expression is asymptot-
ically valid under some conditions. Then, we particularize the
proposed expression to the case where the complete data set is
the concatenation of the received observation and a vector of
nuisance parameters independent of the parameter of interest.
In this particular case, we show that the CRB associated to the
complete data set is equal to the MCRB. Finally, we briefly dis-
cuss the complexity associated to the evaluation of the proposed
expression. In Section IV, we illustrate the relevance of the pro-
posed approach in two different examples. We consider the es-
timation of the mean in a Gaussian mixture problem and the
estimation of the carrier phase offset in a digital communica-
tion system. In particular, we emphasize that the EM algorithm
behavior may be well predicted from the knowledge of the CRB
and MCRB when the number of observations is large.

II. ML ESTIMATION, EM ALGORITHM, AND CRBS

In this section, we briefly review some notions which will
be useful in the remainder of this paper. In Section II-A, we
present the EM algorithm and discuss some of its features. In
Section II-B, we recall the main equations of the standard and
the modified CRBs.

A. ML Estimation and the EM Algorithm

Let us consider an observation vector depending on an un-
known deterministic scalar parameter . The ML estimate of
given is the solution of the following maximization problem:

(1)

where is a trial value of . The ML estimator enjoys very good
asymptotic statistical properties but its evaluation is unfortu-
nately quite complex in a number of practical problems [7].

In order to circumvent this issue, iterative ML search methods
have been proposed in the literature. In particular, the EM al-
gorithm, proposed by Dempster, Laird, and Rubin in [1], is a
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powerful iterative method which has been shown to provide a
suitable solution to a number of problems encountered in the
technical literature [2]. Formally, the EM algorithm is based on
the following two steps:

(2)

(3)

where is the estimate computed by the EM algorithm at
iteration and , where is a many-to-one mapping.

is the set of values that can take on. Vectors and are
often referred to as the incomplete and the complete data sets,
respectively.

Since the EM algorithm is an iterative method, the question of
its speed of convergence naturally arises. Dempster, Laird, and
Rubin showed in their seminal paper [1] that the convergence of
the EM algorithm is locally linear, i.e., we have in a neighbor-
hood of that

(4)

where and is the rate of
convergence of the EM algorithm. The authors showed more-
over that the rate of convergence of the EM algorithm may be
related to the amount of missing information2 in the considered
problem, i.e.,

(5)

where and are, respectively, the information ma-
trices associated to the complete and the missing data, i.e.,

(6)

(7)

B. The Standard and the Modified CRBs

The standard [7] and the modified [6] CRBs are lower bounds
on the mean square estimation error of any unbiased estimator.
In the case of the estimation of a scalar parameter from a
received observation vector , the (standard) CRB may be ex-
pressed as the inverse of the Fisher information matrix, i.e.,

(8)

(9)

where is a derivation variable.

2The missing information may actually be seen as the difference between the
amount of information contained in the complete data set and the incomplete
data set.

In some situations, the standard CRB may be quite tedious to
evaluate. In particular, when the received observations also de-
pend on a nuisance parameter vector , the evaluation of
may require a huge summation, see, e.g., [8]. In such situations,
we may use the modified CRB (MCRB) [6], which is easier to
compute but looser than the standard CRB, i.e.,

. Formally, the MCRB is defined as

(10)

To conclude this subsection, let us mention that the MCRB has
been shown in [9] to be the high-SNR asymptote of the standard
CRB, i.e., the CRB and the MCRB coincide when the SNR tends
to infinity.

III. A CRB-BASED EXPRESSION OF THE EM MEAN SPEED

OF CONVERGENCE

As discussed in the introduction, the local convergence of
the EM algorithm given a particular observation vector has
already been well studied in the literature. In some situations,
however, one may been interested in the average speed of con-
vergence of the EM algorithm; the average being taken over the
distribution of the observations . In this section, we will focus
on this problem. In particular, we will consider the evolution of
the following quantity throughout the iterations:

(11)

where is the set of values that can take on.
In Section III-A, we will show that this quantity may be ex-

pressed as

(12)

where

(13)

when the size of the observation vector tends to infinity and
under some regularity conditions. In other words, we will em-
phasize that, in the asymptotic regime, the evolution of the mean
absolute error is linear and that the factor of pro-
portionality is only a function of the ratio of two CRBs. In
the sequel, we will refer to as the mean convergence rate
(MCR).

In Section III-B, we will emphasize that the MCR can be
related to the well-known MCRB when the complete data set
is made up of the concatenation of the observation vector and
a vector of nuisance parameter independent of . In such a
case, we show that

(14)

Finally, in Section III-C we discuss the practical evaluation of
the MCR and the associated complexity.
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A. Asymptotic Speed of Convergence of the EM Algorithm

In this section, we show that (12)–(13) enable to characterize
the EM-algorithm behavior in the asymptotic regime. In order
to do so, we will proceed in two steps. First, we will show that,

may be lower and upper bounded as
follows:

(15)

where is the maximum of the standard deviations of
and , and

(16)

(17)

Then, in a second part, we will show that these bounds tend to
when the size of the observation vector tends to

infinity.
Let us first show (15). We will assume that is in a

neighborhood of with probability 1. Therefore, using (4)
we have

(18)

Let us define, , the following subspaces of the observa-
tion space

(19)

(20)

Since and , we have

(21)

In order to find a lower and an upper bound on the left-hand side
of (21), we will derive a lower and an upper bound on each term

of the right-hand side. Let us first consider the first term. Using
the definition of , we can lower-bound and upper-bound
as follows:

(22)

(23)

Hence, using the definition of and in (17) we have

(24)

Let us now derive a bound on the second term in (21). Since
, and , we have

(25)

Moreover, by Cauchy-Schwarz we have that

(26)

(27)

Now we have that

(28)

(29)

since is defined by the intersection of two events. More-
over, by Chebychev we have that the probability that and

are “ -away” from their mean is upper bounded by

(30)

(31)

where (respectively, ) is the variance of (respec-
tively, ). Defining

(32)
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we have, therefore

(33)

Combining (24) and (33), we can, therefore, bound
as follows:

(34)

Furthermore, we have

(35)

(36)

(37)

Inequality (35) follows from the nonnegativity of and
. Equations (36) and (37), respectively, follows from the

fact that and from (33). Using (35) and (37), we
finally end up with (15).

Let us now consider the bounds in (15) when the number of
observations, say , tends to infinity and under the following
conditions:

(38)

(39)

(40)

First, taking (38) into account, we also have asymptotically that

(41)

(42)

Relations (42) and (41) can be shown as follows. Using the def-
inition of the complete-data information matrix (6) and taking
the expectation with respect to , we have

(43)

From (38), we have that asymptotically and therefore

(44)

Now, we have that

(45)

(46)

since3 and is, therefore, not a function
of . Plugging (46) in (44), we get

(47)

Comparing (47) with (8), we see that the right-hand side (RHS)
of (47) is nothing but the inverse of the CRB associated to and
based on the complete data set . This shows (41). Let us now
consider (42). First, notice that and may be related
[2] as

(48)

Based on (48), we may write

(49)

Using the fact that from (38), we finally have

(50)

(51)

where (50) follows from (41), and (51) follows from the defini-
tion of the CRB (8). This shows (42).

Plugging (38), (39), and (40) into (15), we get

(52)

3 ��� is the indicator function which is equal to 1 if the statement � is true
and 0 otherwise.
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where

(53)

Note that (38) also implies that since the
CRB is a lower bound on the mean square error. Therefore, as
long as (39) holds we have for any that

(54)

Finally, notice that our initial assumption that is (with prob-
ability 1) in a neighborhood of ensures that .
Therefore, since (52) is valid , we have

(55)

This proves (12).
Let us pause a moment to discuss this result. As far as our

building assumptions are valid, we just showed that (12) and
(13) establish a relationship between the rate of improvement
of the mean absolute error and the CRBs asso-
ciated to the complete and incomplete data sets. In particular,
we see from (13) that the (mean) rate at which the EM algo-
rithm converges to the ML estimate decreases a function of the
ratio . This ratio is actually a measure of the im-
provement of the estimation quality which can be achieved by
observing the complete-data set instead of the incomplete-data
set. Note that (see the Appendix),

(56)

and, therefore, by (13)

(57)

This implies that the mean absolute estimation error will be non-
increasing at each iteration, which is in good accordance with
the convergence properties of the EM algorithm [1], [10]. Note
also from (13) that the larger the ratio , the slower
the mean convergence of the EM algorithm. Interestingly, this
result is in good accordance with the existing convergence re-
sults [1], [2] according to which the speed of convergence of
the EM algorithm depends on the amount of missing informa-
tion between the incomplete and the complete data sets.

B. Mean Convergence Rate: Nuisance Parameter Case

In this section, we particularize the MCR expression (13) to
the case where the complete data set is defined as ,
where is a vector of nuisance parameters affecting and in-
dependent of . This particular case often occurs in digital com-
munication systems where we have to estimate some channel

parameter independent of the transmitted symbol sequence .
We show that, in this particular case, the MCR is written as

(58)

To prove (58), we show that when
. Using the definition of both the CRB and the

complete data set , we, respectively, have

(59)

(60)

Using the Bayes rule and the independence between and , we
finally have

(61)

(62)

Comparing (62) with (10), we see that the RHS of (62) corre-
sponds to the definition of . This shows (58).

C. Practical Evaluation of the MCR

In this section, we briefly discuss the complexity associated
to the evaluation of the MCR. In particular, it is interesting to
compare the complexity associated to the computation of the
MCR to the complexity pertaining to the evaluation the standard
convergence rate defined in (5).

On the one hand, the evaluation of implies: i) the com-
putation of ; ii) the evaluation of the information matrices

and . Unfortunately, these two operations imply
most of the time a large computational burden in scenarios
of practical interest. First, the computation of implicitly
requires a complexity equivalent to running the EM algorithm
until convergence. Indeed, if there exists an algorithm able to
compute with a complexity lower than the EM algorithm,
considering the EM algorithm has only little interest. Moreover,
the evaluation of and is also usually a complex
task. Indeed, the EM algorithm is often used in situations where
Newton-type algorithms (which requires the computation of
the Hessian of the incomplete-data likelihood function) is
too complex [2]. Now, if the evaluation of is
complex, so is the evaluation of and since these
quantities are related as in (48).

On the other hand, the computation of the MCR (13) usually
exhibits a reasonable complexity. Indeed, the evaluation of (13)
requires the evaluation of and . Now, has
usually an explicit expression very easy to evaluate (see [6] and
Section IV for some examples) and its complexity is, therefore,
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negligible. Moreover, can for example be efficiently eval-
uated as follows [8].

1) Generate independent realizations of according to
.

2) For each vector , evaluate as
follows:

(63)

(64)

(65)

(66)

where we have used the fact that

in (64) and (65).
3) Compute as follows:

(67)

Comparing (66) with (2)–(3), we can notice that the evaluation
of (66) has more or less the same complexity as one EM-al-
gorithm iteration (indeed, maximizing a function is in general
roughly as complex as computing its gradient). The number of
realizations depends on the accuracy we want to achieve on
the speed of convergence of the EM algorithm. In our simula-
tions (see Section IV), we have noticed that if is not very
close to , we can already achieve a good accuracy for very
small values of (around 10–20). On the contrary, when
is close to , one needs to increase to achieve the re-
quired accuracy.

Let us conclude this section by mentioning that in a number of
situations, the proposed expression (13) enables to have a good
insight into the EM-algorithm without making any computation.
Indeed, first it is worth noticing that the behavior of the CRBs in
many estimation problems has already been studied and is avail-
able in the literature. We can therefore take benefit from these
results to predict the EM-algorithm convergence via (13). More-
over, as it will become clear from our examples in Section IV,
the behavior of the CRB is often predictable by some intuitive
reasoning. In such cases, it is therefore easy from (13) to have a
qualitative idea of the evolution of the EM-algorithm speed of
convergence when some parameters of the problem at hand are
modified.

IV. EXAMPLES

In this section, we illustrate by simulation that the proposed
expression enables to properly predict the convergence of the
EM algorithm when the size of the observation set is large

enough. In particular, we will consider the estimation of the
mean in a Gaussian mixture scenario and the problem of esti-
mating the carrier phase in a digital communication receiver.

A. Gaussian Mixture

As a first example, we consider the ML estimation of a pa-
rameter in the following Gaussian mixture problem:

(68)

where

(69)

(70)

In words, the observation is generated by first selecting either
Gaussian distribution (69) or (70) with probability
and , respectively, and then drawing the observation
according to . Equation (68)–(70), therefore, defines
a particular Gaussian mixture problem where the two Gaussian
distributions have, up to a sign, the same mean but can have
different variances. In the sequel we will assume that the distri-
bution is the same and equal to .

Let us consider the ML estimation of by means of the EM
algorithm. Defining the complete data set , where

is the vector made up of all the , and using the standard EM
(2)–(3) we easily get the following update equation:

(71)

where

(72)

(73)

According to our previous derivations, the EM-algorithm be-
havior should be asymptotically well characterized by means of
the CRB and MCRB associated to the estimation problem [see
(58)]. The CRB and MCRB can be computed as follows. On the
one hand, using (10) one readily obtains that

(74)

In particular, if , we have that

(75)

i.e., the MCRB is equal to the CRB associated to the estima-
tion of the mean of one single Gaussian of variance [7]. On
the other hand, the CRB can be computed following the proce-
dure described in Section III-C. The CRB and the MCRB are
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Fig. 1. Standard and modified CRBs versus the absolute mean of the Gaussians
of the mixture.

Fig. 2. Evolution of the mean absolute distance between the EM and the ML
estimates for different number of observations.

represented in Fig. 1 for , and
.

We have represented4 in Fig. 2 the evolution of
versus the number of iterations. The dashed

lines represent the performance predicted via (12) and (58)
whereas the triangles, circles, squares, and stars represent
the actual EM-algorithm performance5 for different number
of observations. We can notice that the simulation results are
in good accordance with the proposed prediction when the
number of observations increases. We can also notice that, as
expected from the behavior of the CRB and MCRB in Fig. 1,
the mean speed of convergence of the EM algorithm increases
when the value of increases.

4for the sake of clarity, the curves corresponding to different values of � have
been vertically shifted.

5These curves have been computed by “Monte Carlo simulations,” i.e., by
averaging � ��� for a large number of independent realizations of � drawn
according to ��� � ��.

Note that the behavior of the CRB can often be easily pre-
dicted by a little thought. For example, in the considered sce-
nario, we can easily predict that the CRB tends to the MCRB
when is sufficiently large. Indeed, on the one hand, if in-
creases, the overlapping between the two Gaussians decreases.
On the other hand, the MCRB [see (75)] actually corresponds
to the CRB associated to the estimation of the mean of one
single Gaussian. Now, it is intuitively clear that we can achieve
the same degree of accuracy when estimating the mean of one
Gaussian or the mean of two nonoverlapping Gaussians having
opposite means. From this simple reasoning and using the pro-
posed CRB-based expression, it is therefore easy to have a qual-
itative idea of the EM-algorithm behavior in the limit of large

. For example, in the considered case, we can predict that the
mean speed of convergence will increase when increases.

In the next section, we will give more examples in which we
can intuitively predict how the EM-algorithm speed of conver-
gence will evolve when some parameters of the problem at hand
are modified.

B. Carrier Phase Estimation

In this section, we consider the practical example of the car-
rier-phase synchronization in a digital receiver. The observation
model may be expressed as follows:

(76)

where is a vector of data symbols belonging to constellation
alphabet is the mean energy per symbol, is the noise
spectral density, is the carrier-phase offset, and is a vector of
zero-mean white Gaussian noise samples with complex variance
equal to 1.

The EM algorithm is applied to the problem of computing the
ML estimate of the carrier phase offset. Defining the complete
data set as , we get the following EM update
equation [11]:

(77)

where

(78)

and denotes the argument of the complex number .
Note that the definition of the complete data set is similar to the
one made in Section III-B. Hence, in the remainder of this sec-
tion, we will compare the EM-algorithm speed of convergence
to the one predicted using (58).

The MCR expression in (58) is only a function of the CRB/
MCRB-ratio. On the other hand, note that the behavior of the
CRBs and MCRB associated to carrier-phase estimation has
been extensively studied in the literature, see, e.g., [12], [8], [6],
and [9]. In [12], the authors derive the CRB expression for un-
coded transmissions, i.e., assuming that all transmitted symbols
are equiprobable. In [8], a semianalytical method is proposed
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Fig. 3. CRBs versus� �� -ratio for uncoded PSK transmission with different
constellation sizes.

for the evaluation of the CRB in coded scenarios. In [6], the au-
thors derived the expression of the MCRB

(79)

Finally, in [9], the author shows that the CRB is equal to the
MCRB at high signal-to-noise ratios (SNRs).

In the remainder of this section, we will illustrate that (58)
may help predicting the EM-algorithm behavior by taking ben-
efit from the knowledge of the CRB and MCRB behavior. We
will consider the sensitivity of the EM-algorithm convergence
to, respectively, the symbol-constellation size, the SNR and the
symbol-sequence a priori information . In each scenario,
the EM-algorithm performance computed via Monte Carlo sim-
ulations will be compared to the one predicted by means of (58).

a) Effect of the Constellation Size: We first investigate the
EM-algorithm behavior when the size of the symbol constella-
tion alphabet varies. We consider the following setup. The trans-
mitted frames consist of 1000 uncoded PSK symbols. The size
of the constellation alphabet is set to either 2 (BPSK), 4 (QPSK)
or 8 (8-PSK). We use a Gray mapping.

The CRBs and the MCRB6 associated to this setup are rep-
resented versus the -ratio in Fig. 3. We see that for a
given -ratio, the larger the constellation size the worse
the achievable estimation quality. This behavior is predictable
from some intuitive reasoning. Indeed, it is easy to show that
the MCRB defined in (79) is equal to the CRB associated to the
carrier phase estimation problem when the symbols are per-
fectly known at the receiver (i.e., there is no uncertainty about

). On the other hand, for a given -ratio, it is clear that
the more elements we have in the constellation alphabet , the
more uncertainty we have about the transmitted symbols. As a
consequence, this implies that increasing the constellation size
can only decrease the estimation quality. Based on the behavior
of the CRBs and MCRB and using (58), we can therefore ex-
pect the EM algorithm to exhibit (asymptotically) a faster mean
speed of converge when the size of the constellation decreases.

6Note that the MCRB does not depend on the constellation size.

Fig. 4. Absolute mean distance between the ML estimate and the EM-algo-
rithm estimate at a given iteration. Monte Carlo simulations are compared with
the performance predicted by (58). The plot illustrates the sensitivity of the
EM-algorithm speed of convergence to the choice of the constellation size.

Fig. 4 illustrates the validity of the proposed approach. We
compare the EM-algorithm performance as predicted by (12) and
(58) with actual performance computed via Monte Carlo simula-
tions. More particularly, we have represented
versus the number of EM iterations. The -ratio has been
set to 4 dB. The EM algorithm has been initialized by means of a
phase estimate computed by a Viterbi and Viterbi [13] synchro-
nizer. The dashed curves correspond to the prediction computed
from (12) and (58) whereas the circles correspond to the actual
performance computed via Monte Carlo simulations. We see
from Fig. 4 that the simulated points are very close to the per-
formance predicted via (58). Therefore, as far as our simulation
setup is concerned, the proposed CRB-based expression (58) of
the MCR enables to accurately predict the EM algorithm conver-
gence. In particular, we can easily predict from the CRB behavior
in Fig. 3 that an increase of the constellation size will decrease
the speed of convergence of the EM-based phase synchronizer.

b) Effect of the SNR: We now illustrate the sensitivity of
the EM algorithm speed of convergence to the system operating
SNR. We keep the same setup as in the previous point. The
CRB and MCRB plotted in Fig. 3 are therefore still valid for
computing the MCR via (58). We see that, as emphasized in
[9], the CRBs tend to the MCRB at high SNR irrespective of
the constellation size. From our previous derivations we can,
therefore, conclude that, as long as is large enough, the EM
algorithm will exhibit a faster speed of convergence when the
SNR increases.

In Fig. 5, we compare the performance predicted via (12) and
(58) with the one computed by Monte Carlo simulations. The
CRB-based predictions are plotted with dashed curves and the
simulated points with circles. The constellation alphabet is a
Gray-mapped 8-PSK and we have considered equal to
4, 8, and 12 dB, respectively. We see from this figure that the
behavior predicted by (12) and (58) is in good accordance with
the results computed by Monte Carlo simulations. We also see
that, as expected, the EM algorithm converges all the faster as
the SNR is large.
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Fig. 5. Mean distance between the ML estimate and the EM-algorithm estimate
at a given iteration. Monte Carlo simulations are compared with the performance
predicted by (58). The plot illustrates the sensitivity of the EM-algorithm speed
of convergence to the operating SNR.

Fig. 6. CRBs versus� �� -ratio for QPSK uncoded and coded transmissions.

c) Effect of Coding: As a last example of the utility of
(12) and (58), we consider the effect of an error-correcting code
on the speed of convergence of the EM algorithm. Fig. 6 rep-
resents the CRB associated to a (particular) coded and an un-
coded transmission, respectively. The transmitted frames con-
sist of 1000 QPSK symbols with Gray mapping. For the coded
transmission, we used a rate-1/2 convolutional code with con-
straint length equal to 3. Since the code structure provides some
a priori information about the transmitted sequence, “coded”
CRB is always lower than the “uncoded” one [8]. According to
our previous reasoning, this means that the EM algorithm should
exhibit a faster convergence for coded transmissions than for un-
coded ones. This is illustrated in Figs. 7 and 8. In Fig. 7 we have
represented the MCR predicted by (58) in the coded and un-
coded cases. We see that, in good accordance with our intuition,
the MCR is always lower for the coded than for the uncoded
transmission. In Fig. 8, we compare the MCR approximation

Fig. 7. EM-algorithm mean convergence rate versus � �� -ratio for QPSK
uncoded and coded transmissions.

Fig. 8. Mean distance between the ML estimate and the EM-algorithm estimate
at a given iteration. Monte Carlo simulations are compared with the performance
predicted by (58). The plot illustrates the EM-algorithm speed of convergence
for QPSK uncoded and coded transmissions.

given in (58) (dashed lines) to actual Monte Carlo simulation
results (circles). We see that the EM speed of convergence is
much faster in the coded case than in the uncoded one. We can
note again the good accordance between the EM performance
predicted via (12) and (58) and the simulation results.

V. CONCLUSION

In this contribution, we addressed the problem of the char-
acterization of the EM algorithm mean speed of convergence.
Based on some building assumptions, we showed that the
EM-algorithm asymptotic mean speed convergence can be
related to the CRBs associated to the incomplete and the com-
plete data sets, respectively. Using the derived expression, we
showed that we can gain a good intuition into the EM-algo-
rithm behavior: the further the incomplete-data CRB is from
the complete-data CRB, the slower the EM-algorithm speed
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of convergence. We then particularized our result to the case
where the complete data set is defined as the concatenation
of the incomplete data set and a nuisance-parameter vector.
In such a case, we emphasized that the complete-data CRB
is nothing but the well-known modified CRB (MCRB). Fi-
nally, we illustrated our derivations by simulation results. In
particular, we showed that the performance predicted by our
approach is in good accordance with Monte Carlo simulation
results when the number of observations is large.

APPENDIX

Here, we show that (56) is valid. The first inequality in (56)
directly derives from the definition of the CRB [7], [14]. The
second inequality may be proved as follows. Using twice the
Bayes rule on , we have

(80)

Since univocally defines through the many-to-one mapping
(see Section II) we have

(81)

where is the indicator function which is equal to 1 if
is true and 0 otherwise. Taking the logarithm and the second
derivative of (81), we then get

(82)
since does not depend on . Taking the expectation
with respect to of both sides, we finally have

(83)

since the LHS does not depend on . Considering the first term
in the RHS of (83), it can readily be shown [7] that

(84)

Hence

(85)

Taking the expectation with respect to of both sides of
(85), we have

(86)

where the RHS derives from the fact that

Taking the negative of (86) and inverting, we finally get (56).
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