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On the Hybrid Cramér Rao Bound and Its
Application to Dynamical Phase Estimation
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Abstract—This letter deals with the Cramér–Rao bound for the
estimation of a hybrid vector with both random and deterministic
parameters. We point out the specificity of the case when the deter-
ministic and the random vectors of parameters are statistically de-
pendent. The relevance of this expression is illustrated by studying
a practical phase estimation problem in a non-data-aided commu-
nication context.

Index Terms—Cramér–Rao bounds, synchronization parame-
ters estimation.

I. INTRODUCTION

Anatural problematic when designing an estimator is the
evaluation of its performance. Lower bounds on the mean

square error (MSE) mainly answer this question and the well-
known Cramér–Rao bound (CRB) is widely used by the signal
processing community. Depending on assumptions on the pa-
rameters, the CRB has different expressions. When the vector of
parameters is assumed to be deterministic, we obtain the stan-
dard CRB and when the vector of parameters is assumed to be
random with an a priori probability density function (pdf), we
obtain the so-called Bayesian CRB [1].

At the end of the 1980s, an extension combining both the
standard and the Bayesian CRBs was proposed [2]. Indeed, in
some practical scenarios, it is natural to represent the parameter
vector by a deterministic part and by a random part. This bound
has thus been called the hybrid CRB (HCRB). Until now,
results available in the literature essentially focused on the
case where the deterministic part and the random part of the
parameter vector are assumed to be statistically independent
(see, e.g., [2, eq. (5)], [3, eq. (13)] and [4, eq. (13)]). To the
best of our knowledge, a closed-form expression of the HCRB
with a statistical dependence between the deterministic and the
random parameters has never been reported in the literature.
The goal of this letter is then twofold. First, in Section II, we
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remind the structure of the HCRB and we point out the speci-
ficity of the case when the deterministic part and the random
part of the parameter vector are statistically dependent. Second,
in Section III, motivated by this analysis, we give a closed-form
expression of the proposed bound in the practical case of a
dynamical phase subject to a linear drift in a non-data-aided
communication context.

II. HYBRID CRAMÉR-RAO BOUND

A. Background

Let be the parameter vector that we
have to estimate. This vector is split into two sub-vectors
and , where is assumed to be a deterministic
vector and is assumed to be a random vector with an
a priori pdf . The true value of will be denoted .
We consider as an estimator of , where is the observa-
tion vector. The HCRB satisfies the following inequality on the
MSE:

(1)

where is the so-called Hybrid Information Ma-
trix (HIM) defined as [2]

(2)

where .
When the deterministic and the random parts of the parameter

vector are assumed to be independent, and after some algebraic
manipulations, the HIM can be rewritten as (see [3, eq. (18)])

(3)

where

(4)

With this aforementioned structure, it is straightforward to
reobtain the standard and the Bayesian CRBs. Indeed, if ,
we have

(5)

which is the standard CRB, and, if , we have

(6)

which is the Bayesian CRB.
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B. Extension When and Are Statistically Dependent

We now assume a possible statistical dependence between
and . In other words, is now assumed to be a random
vector with an a priori pdf .

Based on the HIM definition given by (2) and expending
the log-likelihood as

, we obtain the following HIM:

(7)

where is given by (4).
In order to explicitly show the modification in comparison

with the HIM given by (3), can be rewritten as (8) at the
bottom of the page.

Obviously, if we assume in this expres-
sion, we straightforwardly reobtain (3).

Based on this structure, one now has to prove that there is still
an inequality, i.e., a lower bound on the MSE

(9)

when is given by (8).
Proof: Following the idea of [3] to prove

the inequality (1), one defines a vector such

that , where

.
Consequently, the nonnegative definite matrix

can be decomposed as the

following block matrix: ,

where is the covariance matrix of , i.e.,

and, where is given by

.

Since , its Schur complement satisfies
.

It is straightforward to show that, for an unbiased estimator
w.r.t. the pdf , .

Consequently, the inequality (9) is proved and is a
lower bound on the MSE.

III. HCRB FOR A DYNAMICAL PHASE ESTIMATION PROBLEM

In [4], we have proposed a closed-form expression of the
Bayesian CRB for the estimation of the phase offset for a BPSK

transmission in a non-data-aided context. In this section, we ex-
tend these previous results by providing a closed-form expres-
sion of the HCRB for the estimation of the phase offset and also
of the linear drift.

A. Observation and State Models

We consider a linearly modulated signal, obtained by ap-
plying to a square-root Nyquist transmit filter an unknown
symbol sequence taken from a unit energy
BPSK constellation. The signal is transmitted over an additive
white Gaussian noise channel. The output signal is sampled at
the symbol rate which yields to the observations

(10)

where is a sequence of i.i.d., circular, zero-mean complex
Gaussian noise variables with variance . We consider that the
system operates in a non-data-aided synchronization mode, i.e.,
the transmitted symbols are i.i.d. with .

In practice, several sources of distortions affect the phase.
An efficient model representing these effects is the so-called
Brownian phase with a linear drift widely studied in the liter-
ature. The Brownian phase model with a linear drift is given as
follows:

(11)

where, for any index , is the sequence of phases to be esti-
mated, represents the deterministic unknown linear drift with
true value , and where is an i.i.d. sequence of centered
Gaussian random variables with known variance .

The parameter vector of interest is then made up of both
random and deterministic parameters , where

and . Moreover, from (16), it is
clear that .

B. Derivation of the HCRB

For notational convenience, we drop the dependence of the
different matrices on in the remainder of this letter.
From (8), the HIM can be rewritten into a block matrix

, where we see (12), shown at the bottom of the

next page.
These blocks only depend on the log-likelihoods

and . Let us set
and assume that the initial phase does not depend on , i.e.,

. Using (10) and (11), i.e., the Gaussian
nature of the noise and the equiprobability of the symbols, one
has to see (13), shown at the bottom of the page.

• Expression of : assuming that we have no prior knowl-
edge, i.e., , it is shown in [4] (due

(8)
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to the order one Markov structure exhibited by (11)) that
takes the following tridiagonal structure:

. . .
...

. . .
. . .

. . .
...

. . .

(14)

where and where with

.

• Expression of : since, from (18), is in-

dependent of , . Consequently

(15)

Using the state model, we have

for

Applying the expectation operator , we obtain

(16)

• Expression of : since, from (13), is in-

dependent of , . Consequently

(17)

• Expression of the HCRB: we now give the expression of
which bounds the MSE. Thanks to the block-matrix

inversion formula, we have

(18)

where and
.

We start to compute corresponding to the inverse of the min-
imal bound on the MSE of . Due to the particular structure
of matrices and (14), (16), we obtain

.
From (14), thanks to the cofactor expression in the

matrix inversion formula, we have for any index ,
, where

is the determinant of a matrix . equal to the matrix of
(14) without the plus one on each corner.

The sequence satisfies the following recursive equation:
with and . can

thus be written as , where , , ,
and are given by

.
(19)

Consequently

(20)

and

.
From the definition of , we have

(21)

Using (18), (20), and (21), we obtain, for any index , the
analytical expression of the HCRB diagonal elements in (22),
shown at the bottom of the next page.

Remark: Note that, if (3) was used instead of (8), the HIM
would not be invertible.

C. Simulation Results

We now illustrate the behavior of the HCRB versus the
signal-to-noise ratio (SNR) defined by . We consider a
block of BPSK transmitted symbols. For two distinct
phase-noise variances ( and ),
Fig. 1 superimposes on one side the HCRB [see (30)], the
data-aided HCRB , and the BCRB (see [4, eq.

(12)

(13)
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Fig. 1. Bounds on � versus the SNR (� � �� observations, � � ��� ��� ,
and � � � ��� , � evaluated over �� Monte Carlo trials).

(21)]) on . For the same scenario, Fig. 2 superimposes on
one side the HCRB and the data-aided HCRB on .

At high SNR, we first notice that converges to its
horizontal asymptote given by which is the standard
CRB when is assumed to be known. The observation noise
compared to the phase noise is then not significant enough to
disturb the estimation of ; consequently depends only
on the phase noise and on the number of observations. Con-
cerning the bounds on , and both have
the same asymptote given by which is the modified CRB
(MCRB) for one observation (see [6]). It means that, at high
SNR, the observation is self-sufficient to estimate , and
the error on does not disturb the performance on . More-
over, the HCRB logically tends to the data-aided HCRB.

For median SNR, and leave their re-
spective asymptote. is still lower bounded by the
BCRB and upper bounded by the high-SNR asymptote. This
stems from the fact that taking into account a block of observa-
tions instead of one observation necessarily improves the per-
formance. However, for large values (e.g., ),

stays close to the MCRB because the correlation be-
tween the phase offsets is less significant than the information
brought by the observation . Moreover, when tends to 0,

is above the BCRB because performance is now lim-
ited by the accuracy on the parameter .

At low SNR, is preponderant compared to . Both
and do not depend on : the lack of

knowledge on directly affects the estimation on . As

Fig. 2. Bounds on � versus the SNR (� � �� observations, � � ��� ���

and � � � ��� , � evaluated over �� Monte Carlo trials).

expected, the knowledge of the symbols (data-aided HCRB)
leads to a better estimation of and .

IV. CONCLUSION

In this letter, we have studied the hybrid Cramér–Rao bound
when the random and the deterministic parts of the parameter
vector are statistically dependent. We have applied this bound
in order to evaluate the performance of a dynamical phase es-
timator where the linear drift is unknown in a non-data-aided
context.

REFERENCES

[1] H. L. Van Trees, Detection, Estimation and Modulation Theory. New
York: Wiley, 1968, vol. 1.

[2] Y. Rockah and P. Schultheiss, “Array shape calibration using sources
in unknown locations-part I: Far-field sources,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-35, no. 3, pp. 286–299, Mar. 1987.

[3] H. Messer, “The hybrid Cramér-Rao lower bound—From practice to
theory,” in Proc. IEEE Workshop Sensor Array and Multi-Channel Pro-
cessing (SAM), Waltham, MA, Jul. 2006, pp. 304–307.

[4] S. Bay, C. Herzet, J.-M. Brossier, J.-P. Barbot, and B. Geller, “Analytic
and asymptotic analysis of Bayesian Cramér-Rao bound for dynamical
phase offset estimation,” IEEE Trans. Signal Process., vol. 56, no. 1,
pp. 61–70, Jan. 2008.

[5] J. A. McNeill, “Jitter in ring oscillators,” Ph.D. dissertation, Boston
Univ., Boston, MA, 1994.

[6] M. Moeneclaey, “On the true and the modified Cramér-Rao bounds
for the estimation of a scalar parameter in the presence of nuisance
parameters,” IEEE Trans. Commun., vol. 46, no. 11, pp. 1536–1544,
Nov. 1998.

(22)


