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Abstract

Minimal bounds on the mean square error are generally used in order to predict the best achievable performance
of an estimator for a given observation model. In this paper we are interested in the Bayesian bound of the Weiss-
Weinstein family. Among this family, we have Bayesian Cramér-Rao bound, the Bobrovsky-MayerWolf-Zakai bound,
the Bayesian Bhattacharyya bound, the Bobrovsky-Zakai bound, the Reuven-Messer bound, and the Weiss-Weinstein
bound. We present a unification of all these minimal bounds based on a rewriting of the minimum mean square error
estimator and on a constrained optimization problem. With this approach, we obtain a useful theoretical framework
to derive new Bayesian bounds. For that purpose, we propose two bounds. First, we propose a generalization of the
Bayesian Bhattacharyya bound extending the works of Bobrovsky, Mayer-Wolf, and Zakai. Second, we propose a
bound based on the Bayesian Bhattacharyya bound and on the Reuven-Messer bound, representing a generalization
of these bounds. The proposed bound is the Bayesian extension of the deterministic Abel bound and is found to
be tighter than the Bayesian Bhattacharyya bound, the Reuven-Messer bound, the Bobrovsky-Zakai bound, and the
Bayesian Cramér-Rao bound. We propose some closed-form expressions of these bounds for a general Gaussian
observation model with parameterized mean. In order to illustrate our results, we present simulation results in the
context of a spectral analysis problem.

The material in this paper was presented in part at Bt Workshop on Statistical Signal Processing, Bordeaux, France, July 2005 [1] and
at thelEEE International Conference on Acoustic, Speech and Signal Processing, Toulouse, France, May 2006 [2].

Alexandre Renaux is with University Paris-Sud 11, Laboratory of Signals and Systems, Supélec, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette
cedex, France. (e-mail: renaux@I|ss.supelec.fr)

Philippe Forster is with the University Paris 10 and with SATIE Laboratory (Ecole Normale Supérieure de Cachan), 61, avenue du President
Wilson 94235 Cachan, France. (e-mail: pforster@u-paris10.fr)

Pascal Larzabal is with University Paris-Sud 11 and with SATIE Laboratory (Ecole Normale Supérieure de Cachan), 61, avenue du President
Wilson 94235 Cachan, France. (e-mail: larzabal@satie.ens-cachan.fr)

Christ D. Richmond is with the Advanced Sensor Techniques Group, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,
MA 02420 USA. (e-mail: christ@Il.mit.edu).

Arye Nehorai is with Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA. (e-mail: nehorai@ese.wustl.edu).

This work was developed while Alexandre Renaux was post doctoral research associate in Prof. Nehorai's research group at the Department
of Electrical and Systems Engineering, Washington University in St. Louis.

The work of Alexandre Renaux and Arye Nehorai was supported in part by the Department of Defense under the Air Force Office of Scientific
Research MURI Grant FA9550-05-1-0443, AFOSR Grant FA9550-05-1-0018, and the National Science Foundation Grants CCR-0330342 and
CCF-0630734.

May 9, 2008 DRAFT



NOTATIONS

The notational convention adopted in this paper is as follows: italic indicates a scalar quantity;devirercase
boldface indicates a vector quantity, asanuppercase boldface indicates a matrix quantity, a®\inRe { A} is
the real part ofA andIm { A} is the imaginary part ofA. The complex conjugation of a quantity is indicated by a
superscript * as ird*. The matrix transpose is indicated by a superscrigis in A”, and the complex conjugate
plus matrix transpose is indicated by a superscfips inA¥ = (A”)". Then-th row andmrth column element
of the matrixA is denoted by{A}, .

of zeros.||.|| denotes the norm|.| denotes the modulugbs (.) denotes the absolute valug(.) denotes the Dirac

I denotes the identity matrix of SizZ¥ x N. Oy« IS @ N x M matrix

delta function.E [.] denotes the expectation operator with respect to a density probability function explicitly given

by a subscriptf2 is the observation space althe parameter space.

I. INTRODUCTION

Minimal bounds on the Mean Square Error (MSE) provide the ultimate performance that an estimator can expect
to achieve for a given observation model. Consequently, they are used as a benchmark in order to evaluate the
performance of an estimator and to determine if an improvement is possible. The Cramér-Rao bound [3]-[8] has
been the most widely used by the signal processing community and is still under investigation from a theoretical
point of view (particularly throughout the differential variety in the Riemannian geometry framework [9]—[14]) as
from a practical point of view (see, e.g., [15]-[19]). But the Cramér-Rao bound suffers from some drawbacks when
the scenario becomes critical. Indeed, in a non-linear estimation problem, when the parameters have finite support,
there are three distinct MSE areas for an estimator [20] page 273, [21]. For a large number of observations or for a
high Signal-to-Noise Ratio (SNR), the estimator MSE is small and the area is called an asymptotic area. When the
scenario becomes critical, i.e., when the number of observations or the SNR decreases, the estimator MSE increases
dramatically due to the outlier effect, and the area is called threshold area. Finally, when the number of observations
or the SNR is low, the estimator criterion is hugely corrupted by the noise and becomes a quasi-uniform random
variable on the parameter support. Since in this last area the observations bring almost no information, it is called
no information area. The Cramér-Rao bound is used only in the asymptotic area and is not able to handle the
threshold phenomena (i.e., when the performance breaks down).

To fill this lack, a plethora of other minimal bounds tighter than the Cramér-Rao bound has been proposed and
studied. All these bounds have been derived by way of several inequalities, such as the Cauchy-Schwartz inequality,
the Kotelnikov inequality, the Holder inequality, the Ibragimov-Hasminskii inequality, the Bhattacharyya inequality
and the Kiefer inequality. Note that due to this diversity, it is sometimes difficult to fully understand the underlying
concept and the difference between all these bounds; consequently it is difficult to apply these bounds to a specific
estimation problem.

Minimal bounds on the MSE can be divided into two categories: the deterministic bounds for situations in which
the true vector of the parametés is assumed to be deterministic and the Bayesian bounds for situations in which

the vector of paramete® is assumed to be random with anpriori probability density functiorp (). Among
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the deterministic bounds, we have the well-known Cramér-Rao bound; the Bhattacharyya bound [22], [23]; the
Chapman-Robbins bound [24]-[26], the Barankin bound [27], [28], the Abel bound [29]-[31]; and the Quinlan-
Chaumette-Larzabal bound [32]. Bayesian bounds can be subdivided into two categories: the Ziv-Zakai family,
derived from a binary hypothesis testing problem (and more generally froid any hypothesis testing problem),

and the Weiss-Weinstein family, derived (as the deterministic bounds) from a covariance inequality principle. The
Ziv-Zakai family contains the Ziv-Zakai bound [33], the Bellini-Tartara bound [34], the Chazan-Zakai-Ziv bound
[35], the Weinstein bound [36], the Bell-Steinberg-Ephraim-VanTrees bound [37], and the Bell bound [38]. The
Weiss-Weinstein family contains the Bayesian Cramér-Rao bound [20] page 72, and 84, the Bobrovsky-MayerWolf-
Zakai bound [39], the Bayesian Bhattacharyya bound [20] page 149, the Bobrovsky-Zakai bound [40], the Reuven-
Messer bound [41], and the Weiss-Weinstein bound [42]. A nice tutorial about both families can be found in the
recent book of Van Trees and Bell [43].

The deterministic bounds are used as a lower bound ofoited MSE in 8; i.e.,

- N T
MSE; (60) = [ (8(v)~60) (8(v)~ 60)  p(y]00)dy, ®
Q
wherey € is a complex observation vectgr(y|8,) is the likelihood of the observations parameterized by the

true parameter valué,, and@ (y) is an estimator of,.
On the other hand, Bayesian bounds are used as a lower bound gibbieé MSE; i.e.,

MsEe = [ [ (0)-6) (8()-0) p(.6) dyde. @

e Q

where 8 € © is the random parameter vector with anpriori probability density functiorp (8) = 5(<y]2)) and
p(y, 0) is the joint probability function of the observations and of the parameters.

In the deterministic context, minimal bounds—in particular the Chapman-Robbins bound and the Barankin
bound—are generally used in order to predict the aforementioned threshold effect which cannot be handled by
the Cramér-Rao bound. The Chapman-Robbins bound and the Barankin bound have already been successfully
applied to several estimation problems [28], [31], [44]-[55]. The use of the Abel bound, which can also handle the
threshold phenomena, is still marginal [56].

Contrary to the deterministic bounds, the Bayesian bounds take into account the parameter support throughout
the a priori probability density functior (8), and they give the ultimate performances of an estimator on the three
aforementioned areas of the global MSE. These bounds give the performance of the Bayesian estimator, such as
the Maximum a Posteriori (MAP) estimator or the Minimum Mean Square Error Estimator (MMSEE), and can be
used in order to know the global performance of the deterministic estimators such as the Maximum Likelihood

estimator (MLE), since
MSE¢ — / MSE; () p (0) d6. @)
(C]

The reader is referred to Xat al. [57]-[59], where the MLE performances are analyzed in the context of

an underwater acoustic problem by way of the Ziv-Zakai and of the Weiss-Weinstein bounds. The Ziv-Zakai
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family bounds have been applied in other signal processing areas: time-delay estimation [60]; direction-of-arrival
estimation [38], [61], [62]; and digital communication [63]. On the other hand, the Weiss-Weinstein bound has been
less investigated: the aforementioned &ual. works and in the framework of digital communication [64].

This article presents a new unified approach for the establishment of the Weiss-Weinstein family bounds. Note
that the unification of the deterministic bounds has already been proposed by [65] and [66] based on a constrained
optimization problem. A unification has been proposed by Bekll. in [37], [38] for the Ziv-Zakai family.

Concerning the Weiss-Weinstein family unification, a first approach has been given by Weiss and Weinstein in
[67]. This approach is based on the following inequality proved by the authors:

S E?x,a [0 (y,0)]

MSE _—
“= Eyﬂ [152 (yae)]

: 4
where the function) (y, 6) must satisfied

/ 0 (y.0)p(y,0)d6 = 0. 5)
&)

Weiss and Weinstein gave several functiahgy, ) satisfying (5) for which they again obtain the Bayesian
Cramér-Rao bound, the Bayesian Bhattacharyya bound, the Bobrovsky-Zakai bound, and the Weiss-Weinstein bound.
Moreover, a functiony (y, #) satisfying (5) leading to the Bobrovsky-MayerWolf-Zakai bound is given in [38].
Unfortunately, there are no general rules to fifhtly, 0). In this contribution, the Weiss-Weinstein family unification
is based on the best Bayesian bound, i.e., the MSE of the MMSEE. By rewriting the MMSEE and by using a
constrained optimization problem similar to one derived for the unification of deterministic bounds [65], [66],
we unify the Bayesian Cramér-Rao bound, the Bobrovsky-MayerWolf-Zakai bound, the Bayesian Bhattacharyya
bound, the Bobrovsky-Zakai bound, the Reuven-Messer bound (for which no furctiprd) is proposed in the
Weiss-Weinstein approach), and the Weiss-Weinstein bound. This approach brings a useful theoretical framework
to derive new Bayesian bounds.

For that purpose, we propose two bounds. First, we propose a generalization of the Bayesian Bhattacharyya
bound extending the works of Bobrovsky, Mayer-Wolf, and Zakai. Second, we propose a bound based on the
Bayesian Bhattacharyya bound and on the Reuven-Messer bound, one that represents a generalization of these
bounds. This bound is found to be tighter than the Bayesian Bhattacharyya bound, the Reuven-Messer bound, the
Bobrovsky-Zakai bound, and the Bayesian Cramér-Rao bound. In order to illustrate our results, we propose some
closed-form expressions of the minimal bounds for a Gaussian observation model with parameterized mean widely

used in signal processing, and we apply it to a spectral analysis problem for which we present simulation results.

II. MINIMUM MSE REFORMULATION

In this section we start by reformulating the MMSEE as a constrained optimization problem. Then, we rewrite
the underlying constraint under three different forms that will be of interest for our proposed unification.
In the Bayesian framework, the minimal global MSE and consequently the best Bayesian bound is the MSE of

the MMSEE:f (y) = J6p(6]y)df, wherep (6] y) is thea posterioriprobability density function of the parameter.
e
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Unfortunately, it is generally impossible to obtain a closed-form expression of this MSE. The MMSEE is the solution

) . 2
min Z é (0v) )" p(y.0) dyas. (6)

Let £2 be the set of functiom (y, #) such thatf [v* (y,0) p (y,0) dyd0 is defined. LetC; C L be the subset
(S29]

of the following problem:

of function satisfying

U(Y79):Z(Y)_97 (7)

wherez (y) is a function only ofy.

Consequently, the MMSEE (6) is the solution of the following constrained optimization problem

min [ [v2 (y,0) p(y,0) dydd
v eq (8)
subject tov (y, 8) € C;

Let F be the set of functionsf (y,#), such thatvv (y,8) € LZI%

,m v (y.0) f(y,0) =0,

0 (E)
af Y,

lim
f—+o0

Let us now introduce the three following subsets of functions belongir@to

Cs {(y,)eLQ/er]-' // 8fy’ G iy do= //fy, dyde} (10)

VieF, and [ [f(y,0)dydd =1, andVh such that) + h € O,
Cs =< v( )652/ o0

éé“ (v,0) (f (y,0+h) — f (y,0)) dydd=h

o SubsetC,

e SubsetC;
(11)

e SubsetC,

VfeF, andfff (y,0)dydd =1, andVh such thatt + h € ©, and,Vs € [0,1],
Cy= v(y,a)eﬁi/ ffv y,0) [L* (y,0 + 1, 0) — L'=* (y,0 — h,0)] f (y,0) dydd :
=h[[L'"*(y,0 —h,0) f (v,0) dody
[S29]
(12)
fly.m)
with L (y,n,0) = YOk
Theorem 1 below shows that, although these four subsets are generated in a different manner, they are the same.
Theorem 1:
C1 =Cy=C3=0Cy. (13)

The proof of theorem 1 (13) is given in Appendix A.
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Consequently, the MMSEE (6) (Best Bayesian Bound) is the solution of the following constrained optimization
problemV¥C; i =1,...,4
min [ [v2 (y,0) p(y,0) dydd
[S19]

v

(14)
subject tov (y, 0) € C;

. WEISSWEINSTEIN FAMILY UNIFICATION

In the light of the previous analysis, it appears a natural manner to introduce Bayesian bound lower than the

MMSEE. Indeed, ifP; is a subset of;, the solution of
min [ [v2 (y,0)p(y,0) dydd
v eq

subject tov (y, 0) € P;

(15)

will be also a lower bound of the MMSEE. In this paper, we will first show that an appropriate chofegleads
to the Bayesian bounds of the Weiss-Weinstein family. Second, we will show how this approach can be used in

order to build new minimal bounds, particularly, by solving the following constrained optimization problem
min [ [v* (y,0) p (y,6) dydd
v en

subject tov (y,0) e P;NP; i #j

(16)

In this section, we restriatz, C3, andCy in order to obtain a general framework to create minimal bounds. Then,
by way of a constrained optimization problem for which we give an explicit solution we unify the bounds of the

Weiss-Weinstein family.

A. A general class of lower bounds based®nCs, andC,

Thanks to Theorem 1, we have proposed four equivalent sets of funetign®) leading to the MMSEE. Note

that this equivalence holds for

Vf (y,0) € F in the subsets, @7
Vf(y,0) € F such thatf [ f (y,0) dydd = 1,
o in the subsets, (18)
Vh such thatd + h € O.
Vf(y,0) € F such thatf [ f (y,0) dydf =1,
(S29]
Vh such thatd + h € ©, in the subset,. (19)

Vs € ]0,1].
Consequently, if we take a finite set of functiofigy, #) , a finite set of values:, and a finite set of values,
we will find bounds lower than the best Bayesian bounds and consequently a general class of minimal bounds on
the MSE.

In this way,Cs, C3, andC, are restricted, respectively, as follows
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P
for a finite set of functionsf; (y,0) € 7, i=1...r,

_ (20)
[ Jv(y,0) 2L dydo= [ fi (v,6) dyds.
(S19) (S19)
Pgi
for a particular functionf (y,0) € F such that[ [ f (y,0) dydd = 1,
onN
for a finite set of valuey; such thatd + h;, € ©, i=1..r, (21)
(S19]
Py

for a particular functionf (y,#) € F such that[ [ f (y,0) dydd = 1,
o

for a finite set of valuey; such that? + h; € ©, i=1...r,
for a finite set of values; such thats; € [0,1], ¢=1...r,

égv (v,0) [L* (y,0 + hi,0) — L' (y,0 — hy,0)] [ (y,0) dydd = hiéng’” (v,0 — hy, 0) f (y,0) dody,
(22)

with L (y,n,0) = %.

P2, P3, and P4 define a set of finite constraints, and the problem (15) becomes a classical linear constrained
optimization problem
min [ [v* (y,0) p (y,0) dyd6
0

v

(23)
subject to[ [v (y,0) gi (y.0) dydd = ¢, k=1..K,
(C1Y]
wheregy, (y,0) andc, are the functions and the scalars involvedAn Ps, andPy.
For P,
- ofr (y,0
ar (y,0) = 7fka(g ), k= //fk (y,0)dydd and K = r. (24)
[SIRY
For P5
gk(y,ﬂ):f(y,0+hk.)ff(y,9), Ck:hk and K = r. (25)
For Py
gk’ (Ya 0) = [LS}C (Ya 0+ hka 0) — L1 (y79 - hkv 9)] f (Ya 0) s
ek =h [ L' (y,0 — hy,0) f (y,0) dody, (26)
(S19]

and K =r.

Theorem 2 below gives the solution of the problem (23). Note that this theorem has already been used in the
case of a deterministic parameter in [17].

Theorem 2:Let x € RY be a real vector angd (x) andq (x) be two functions ofRY — R. Let

(p(%),q(x)) = / p(x) g (%) dx, (27)

RN
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be an inner product of these two functions and its associate fipfm)|* = (p (x),p (x)). Letu (x) andgg (x),...,
gx (x) be a set of functions dR¥ — R, and letcy, c1,..., cx and K + 1 be real numbers. Then, the solution of

the constrained optimization problem leading to the minimunfj«ofx)||®> under the followingK + 1 constraints

<U(X)7gk (X)> = Ck k:Oa"'aK7 (28)
is given by
{ min [Ju (x)||? = TG ¢,
v (29)
subject to (28),
with
T
C:{Co c1 -+ CK ) (30)
and
{G}mm = <gm (X) ydn (X)> . (31)

The proof of Theorem 2 (29) is given in Appendix B.

B. Application to the Weiss-Weinstein family

Using (29),P,, Ps, and P,, we have built a general framework to obtain Bayesian minimal bounds on the

MSE. In this section, we apply this framework and we revisit the Bayesian bounds of the Weiss-Weinstein family.
Letx = [ yI' 6 ] andu (x) = v (y,0) /p(y,0) (i.e. gx (y,0) = /0 (y,0)gx (y,0)). Note that Theorem 2 still

holds for a set of complex observatiopshy lettingy = { Re {)—,T} Im {yT} }T.

Moreover, due to the restriction at some particular valueg @f, 0), h, ands, it is still possible to add constraints
with our prior on the MMSEE in order to achieve tighter bounds. Here we will use the natural constraints of a null
bias in terms of the joint probability functiome., [ [v (y,8)p (y,0)dydfd=0, wherep (y,6) is the joint density
of the problem ie., go (y,0) = \/p (y,0) andcy = 8)Q

a) Bayesian Cramér-Rao boundy using the setP, with K = 1 and f; (y,0) = p(y,0) (consequently,

[ [ fi1(y,0) dydf=1), we obtain the following set of constraints:
[S29]

e=[o1]".
90 (y,0) = /p(y.0), (32)
9 (y.0) = map%m
Matrix G involved in Theorem 2 is
0
G= 2 , (33)

since [ [ 2%:8) 4yq6 = 0.
(S29]
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Finally

cI'G™le = (// (mnp y,0 >2p(y79)dyd9) :

= BCRB, (34)

which is the Bayesian Cramér-Rao bound [20] page 72, and 84.

lc
M we obtain

b) Bayesian Bhattacharyya boundy using the setP, with K = r and f (y,0) = 0%

the following set of constraints:

T
CZ[O 10 -- 0} )

90 (v,0) = \/p(y,9), (35)

" p(y,0
ar (y,0) = p(lyﬁ) SE%') k=1,....K.
w—o for k =3,..., K. With

We assume that the joint probability density function is such th]an 9 PTL

6—+oo

this assumption and Eqgn. (9), we have ,

c'G™le = {Bfl}L1
= BhattB, (36)
where S y
{B},, :éép(}l,ﬁ)a 8(0}: )5178593; )d do, (37)

which is the Bayesian Bhattacharyya bound [20] page 149.
c) Bobrovsky-MayerWolf-Zakai bound®y using the setP, with K = 1 and f; (y,0) = q(y,0)p(y.6),

whereq (y, 0) is any function such thaf; (y, §) satisfies (9), we obtain the following set of constraints:

T
€= [ 0 [[a(y.0)p(y,0)dydd
[S19]
g1 (y.,0) = \/p(ly,a) oy Oaty.0)]

Due to (9), [ [ 24929 jy49 — 0 and the matrixG involved in Theorem 2 is
(S19)

1 O
. ) (39)
0 f J \/p<y,e) s dydd
Finally,
2
(ffq y,0 )dgdy)
"G le = ’
a[p(y,e)q(ye)] dydf
y
Lfa (251%)
= BMZB(q(y,9)). o
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10

We recognize the Bobrovsky-MayerWolf-Zakai bound [39], which is an extension of the Bayesian Cramér-Rao
bound, since

BMZB (1) = BCRB. (41)
d) Bobrovsky-Zakai boundWe choose here that the particular valuefdiy, 6) = p(y,6), the joint density

probability function of the problem. Consequentfy[ f (y, 0) dydf=1.

[S}Y]
By using the sefP; with K = 1, we obtain the following set of constraints

T
o]’
90 (y.0) = \/p(¥.,0), (42)
9) — P&.9+h) —p(y.60)
g1 (y,9) Vo3 .0
Matrix G involved in Theorem 2 is
1 0
G = 0 ff (p(y,(-)—&-h)—p(yﬁ))zd a0 |- (43)
p(y.0) y
e
Finally,
h2
T—1
c G ¢ =
p2(y,8+h) _
f e dyd) —1
= BZB (h). (44)
Sinceh is a parameter left to the user, the highest bound that can be obtained with (44) is given by
h2
BZB = sup BZB (h) = sup 45
0 (h) = = ff“y"’*hd o —1’ @)
p(y,9)

which is the Bobrovsky-Zakai bound [40].

e) Reuven-Messer boundVe choose here that the particular valuefdfy,d) = p(y, ), the joint density

probability function of the problem. Consequently[ f (y, 0) dydf=1.

on
In order to obtain a bound tighter than the Bobrovsky-Zakai boued P3; — C3), we use the seP;3 with
K = r. We then obtain the following set of constraints:

e=[o hT}T

0 (y,0) = p(y,0), (46)
0) = p(y’9+hk) p(y.0)  p—1, ...
gk (Y7 ) \/m ) , T
T
whereh = [ hi -+ h, } .
Matrix G involved in Theorem 2 is
1 0 0
0
G= , (47)
D
0

May 9, 2008
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11

whereD (r x r) is defined as

(P (y,0 + hi) —p(y.0)) (p(y,0 + hj) — p(y.0))
D}, g / ] dydf
_ é / b+ Z()ype()y B0 gyap 1. (48)
Finally,
c’G7'¢c = h'D'n
= RMB(h). (49)

As for the Bobrovsky-Zakai bound, singeis a parameter vector left to the user, the highest bound that can be
obtained with (49) is given by
RMB = sup RMB (h) = suph’D~'h, (50)
h h

which is a particular caseof the Reuven-Messer bound [41].
f) Weiss-Weinstein boundiVe choose here that the particular valuefdfy,8) = p(y,9), the joint density
probability function of the problem. Consequenty[ f (y, 0) dydf=1.

2Ye)
By using the sefP, with K = r, we obtain the following set of constraints:

T
c=[ 0 MEy[L (v.0—h,0)] - By L% (v,0—hi6)] |
90 (v,0) = /p(y.9), (51)
9k (v.0) = /2 (v.0) (L** (y,0 + hy,0) — L'~ (y,0 — hy,,0)) k=1,...,r
Let
T
£ = [ hBy g [L' (y,0 = h1,0)] -+ hEyo [P (y,0 — hy,6)] } : (52)
b= [ h,_r, (53)
T
s = (o oos ] (54)

The application of Theorem 2 leads to

G le = TwWlg
= WWB(h,s), (55)
where
(W}, =Eyol(L% (v,0 + hi,0) = L' (y,0 — hi,0)) (L% (y,0 + h;,0) = L' (y,0 — h;,0))].  (56)

1In 1997, Reuven and Messer proposed a hybrid minimal bound based on the Barankin bound for both random and non-random vector of
parameters. Here, only the random case is considered.
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As for the Bobrovsky-Zakai bound and the Reuven-Messer bound, kireoed s are parameter vectors left to

the user, the highest bound that can be obtained with (55) is given by

WWB = supWWB (h,s) = sup&’ WL, (57)
h,s h,s

We recognize the Weiss-Weinstein bound [42].

IV. NEW MINIMAL BOUNDS

The framework proposed in the last section allows us to rederive all the bounds of the Weiss-Weinstein family
by way of a constrained optimization problem. But this framework is also useful for deriving new lower bounds.

In this section, we propose two lower bounds.

A. Some global classes of Bhattacharyya bounds

In [39], Bobrovsky, Mayer-Wolf, and Zakai propose an extension of the Bayesian Cramér-Rao bound given by
Equation (40). The advantage of this bound is the degree of freedom givetyb¥). Indeed, the authors give some
examples for which use of a properly chosen functdy, 6) leads to useful bounds. Moreover, whefy, §) does
not satisfy the regularity assumption given in [28]d, for uniform random variables), a properly chosgfy, 9)
can solve the problem. Here we obtain an extension of this bound and of the Bayesian Bhattacharyya bound in a
straightforward manner by mixing the constraints of the Bobrovsky-MayerWolf-Zakai bound and the constraints of
the Bayesian Bhattacharyya bound.

By using the setP; with K = r and fi (y,0) = W, where ¢ (y,0) is any function such that

fx (¥, 0) satisfies (9), we obtain the following set of constraints:

c=10 (££Q(y,9)p(y,9)dyd0 0 -+ 0 T,
90 (v,0) = vp(y.9), (58)
g (y,0) = \/p(ly,e) ak[q(yézgcp(yﬂ)] k=1,....K.
We assume that the functionqy, ) andp (y,6) are such thaggrﬁmw =0 fork=3,.... K.
With this assumption and Eqn. (9), we have ,
(ffq (y,0)p(y,0) dyd9)2
TG le= 92 {]_371}1 1 (59)
where i ’.
(B}, = //p(;,,e) d'lq (y,af)e)ip (v,0)] & [q (yé(Z’lp (Yﬂ)]dyd& (60)
)
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B. The Bayesian Abel bound

In this section, we propose a new minimal bound on the MSE based on our framework and on the Abel works on
deterministic bounds [29], [30]. In the deterministic parameter context, the Cramér-Rao bound and the Bhattacharyya
bound account for themall estimation erro(near the true value of the parameters). The Chapman-Robbins bound
and the Barankin bound account for tlagge estimation errorgenerally due to the appearance of outliers which
creates the performance breakdown phenomena. In [29] [30], Abel combined the two kinds of bounds in order
to obtain a bound that accounts for both local and large errors. The obtained deterministic Abel bound leads to
a generalization of the Cramér-Rao, the Bhattacharyya, the Chapman-Robbins, and the Barankin bounds. As the
deterministic bounds, the Bayesian Cramér-Rao bound and the Bayesian Bhattacharyya bosmdllaegror
bounds, as compared to the Bobrovsky-Zakai bound and the Reuven-Messer bound whidieageror bounds.

The purpose here is to apply the idea of Abel in the Bayesian context, i.e. to derive a bound that combines the
Bayesian small and large error bounds. This application will be accomplished by way of the constrained optimization
problem introduced in the last section. Our Bayesian version of the Abel bound is derived by mixing the constraints
of the Reuven-Messer bound and the Bayesian Bhattacharyya bound and, thus, represents a generalization of these

bounds. Consequently, we are solving the following constrained optimization problem

min [ [v? (y,0) p (y,0) dydf
v 90 (61)
subject tov (y,0) € P2 NP3
By combining the Bayesian Bhattacharyya constraints (35) and the Reuven-Messer constraints (46), i.e, by
concatenating both vectogs= [g0 (y,0), g1 (¥,0),.... 9k (y,&)]T andc from the Bayesian Bhattacharyya bound
of orderm and from the Reuven-Messer bound of ordeme obtain the following new set ok = m +r + 1

constraints,

_ 0
p(y,0) .
ap(yﬂ)
20 0
g=— andc = 0 . (62)
p(y,0) | ——————
p(y,0+h1) —p(y,0)
hq
L p(y,0+h)—p(y,0) | L
The calculus are detailed in Appendix C, and the theorem 2 leads to
G le= BAB,» (h) = a’Bla+ulJ y, (63)

2The first constraint of the two bounds is the same.
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with
u=IB'a—h, rxl,
J=D-IB'T?, r xr,

T
a:{1 0 --- 0} , mx1,

T
h:|:h1 hg hr:| 7TX17 (64)
i —ffp—y’9+h PO gydg — 1, ¢ x 1,
(S29]

o ) &7 0
= ffp(yl 9 %(e)yf LE2ED dydh, m x m,

s Vi o )
{r}, = ffp(z(z';} ) g(gf e)dde r X m.

Let us note that the first term on right hand side of (63) is equél 4d3,,, o, which is the Bayesian Bhattacharyya
bound of orderm, and thatBAB, , (h) is the Reuven-Messer bound of orderWe have previously shown that
problem (8) leads to the MMSEE (the best Bayesian bound). Here, from the increase of constraints, it follows
that the Bayesian Abel bound is (ferand m fixed) a better approximation of the best Bayesian bound than the
Bayesian Bhattacharyya bound of orderand the Reuven-Messer bound of order

The Bayesian Abel bound as the Reuven-Messer bound dependsfe® parametersi,...,h,. Then, a
maximization over these parameters is desired to obtain the highest bound. Therefore, the best Bayesian Abel
bound is given by

BAB,, , = sup (aTBfla + uTJflu) . (65)
h,

This multidimensional optimization brings with it a huge computational cost. A possible alternative is given
by noting that the Bayesian Cramér-Rao bound is a particular case of the Bayesian Bhattacharyya bound (single
derivative) and that the Bobrovsky-Zakai bound is a particular case of the Reuven-Messer bound (single test point).
Therefore, finding a tractable form of the Bayesian Abel bound in the case whetel andr» = 1 could be
interesting, since the obtained bound will be tighter than both the Bayesian Cramér-Rao bound and the Bobrovsky-
Zakai bound with a low computational cost. In this case, Equation (65) becomes straightforwardly
BCRB™! + BZB~! (h) — 2¢ (h)

BAB;1=s , 66
M P T BCRBIBZB 1 (h) — & (h) (66)

whereBCRBis the Bayesian Cramér-Rao bouBZB is the Bobrovsky-ZakaT bound, and
= - / mnp y’ (y,0+h) dydf. (67)

Equation (66) is interesting, since if the BayeS|an Cramér-Rao bound and the Bobrovsky-Zakai bound are available

for a given problem, the evaluation of tt®AB; ; requires only the computation gf(h).

V. BAYESIAN BOUNDS FORSIGNAL PROCESSING PROBLEMS

In this section, we illustrate our previous analysis through a spectral analysis problem. First, we propose several
closed-form expressions for the different bounds of the Weiss-Weinstein family (including the proposed Bayesian

Abel bound) for a general Gaussian observation model with parameterized mean widely used in the signal processing
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literature (see, e.g., [68] page 35). Then, we apply these results to the spectral analysis problem. Finally, we give

simulation results that compare the different bounds and show the superiority of the Weiss-Weinstein bound.

A. Gaussian observation model with parameterized mean

We consider the following general observation model:
y=m(0) +n, (68)

wherey is the complex observation vectoN x 1), 6 is a real unknown parametas) is a complex deterministic
vector (N x 1) depending (non-linearly) ofi, andn is the complex vectof N x 1) of the noise. The noise is
assumed to be circular, Gaussian, with zero mean and with covariance atdigix The parameter of interestis
assumed to have a Gaussiipriori probability density function with meap and variancers:

1 -5 (0-p)°
e o

0) = 69
p(0) oon (69)
For this model, the likelihood of the observations is given by
1 — L (y—m(0) " (y—m
p(yl6) = (MQ)NQ 25 (y—m(0))" (y—m(9))_ (70)

To the best of our knowledge, only the Cramér-Rao bound expression is known in this case (see [68]).

The Bayesian Bhattacharyya bound requires the calculation of several derivatives of the joint probability function
in order to be significantly tighter than the Cramér-Rao bound, which is generally difficult (see [69], Chapter 4, for
an example for which the Bhattacharyya bound of order 2 requires much algebraic effort to finally be equal to the
Cramér-Rao bound). Consequently, we will not use this bound here.

The details are given in Appendix D.

1) Bayesian Cramér-Rao bound:

BCRB = (71)

o [

2) Bobrovsky-Zakai bound:

h2
BZB = s —mrm) 2 imrm-m@P gy _ (72)
p(0)
3) Bayesian Abel boundBAB; ; is given by (66):
-1 -1 i
BAB1 1 — sup BCRB~"+ BZB~" (h) qu(h)’ (73)
n BCRB-'BZB~1(h)— ¢~ (h)
where ,
BCRB = 27 ;’9(6) 5
—~HE omiv) +1
o2 9[” g || ]h2 (74)
BZB (h) = [pm%) Zlm@tm—m@12
and
1 2 om*™ (9
gi)(h): h —Eosn [R {aeu(m(9+h)m(a))H . (75)
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4) Weiss-Weinstein boundiVe now consider the Weiss-Weinstein bound with one test point, which can be

simplified as follows (see [42], Equation (6)):
h262n(s,h)

WWB = sub i@ 5s, 1) — gn(s.2h)

h,s

where the key point to evaluate this bound;i&, 3), which is the semi-invariant moment generating function [70],

(, ) —m// ayl’“ﬁ dydf. 77

(76)

defined as follows:

This function is given by

ale=1) im m 2_L — ala—1)—a)h— a(a— a)h—
g L 3 (0= (Votemima)no) (o (Valemira)ion) gy 7g)
9@

B. Spectral Analysis Problem

We now consider the following observation model involved in spectral analysis:

yr = ae?™ 0 4 ny, k=0,....,N -1, (79)

wherey, is thek!” complex observation. The observations are assumed to be indepengettite amplitude of the
single cisoide of frequency. {n;} is a sequence of random variables assumed complex, circular, i.i.d, Gaussian,
with zero mean and varianee®. Consequently the SNR is given VR = g—i The parameter of interest is the
frequencyd € © = (—%, %] which is a Gaussian random variable with mgaand variancer? (69).

This model is a particular case of the model (68), where

m () = as (0), (80)
with
T
5(9):[ 1 ed2nb ... ei2m(N-1)6 } . (81)
T
Lety =1 yo - yn-_1 } . The likelihood of the observation is given by

f% <Hy|\2f2a Re{ T ypesameo } +Na2>
p(y10) = H p(yrlf) = k=0 , (82)

)

Note that, if 6 is assumed to be deterministic and in a digital communications context, some closed-form
expressions of deterministic bounds can be found in [56].
The details of the calculus for the Weiss-Weinstein family are given in Appendix E.

1) Cramér-Rao bound:
2

Oy

BCRB = yr :
SNR=ZZN(@2N —1)(N —1)+1

(83)

2) Bobrovsky-Zakai bound:
h2

64SNR(N sin?(rhN)— 1 SnZrhiD ) b

- (84)

BZB = sup
h

>

o

CI%
I
—_
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3) Bayesian Abel boundThe BAB; ; is given by (66)
BCRB~!'+ BZB~'(h) —2¢(h)

BAB; 1 =su , 85
L P T BORBIBZB 1 (h) — ¢ () (85)
where )
BCRB = wis—5—a—28 ,
SNR ‘”%N(zzv—l)(N—l)H 86)
BZB (h) = b :
(h) e4SNR(N—sin2(7rh,N)—%S‘zjj:ﬂhﬁy))#—%_l
and,

¢ (h) =

1 2nSNR cos (2rhN) . 1
0-73+ i <N tan(ﬂ'h) *Slﬂ(?’/ThN) <2$1n(7rh) +N)> . (87)

4) Weiss-Weinstein boundrhe Weiss-Weinstein bound is given by

h262n(s,h)
WWB = S}Bspen(Qs,h) + en(2—2s,—h) _ 9¢n(s,2h)’ (88)
wheren (o, 3) is given by
, 1 sin (273N) 52
= —1)(2SNR (N —sin? (zN) — - =——"—2) - .
(0. = ala—1) (258 (N —sin? (rp) - 3 2O ) - (89)

The Weiss-Weinstein bound needs to be optimized over two continuous parameters, which creates significant

computational cost. Here, two methods for reducing the computational cost are presented.

« As previously statedj is chosen on the parameter support which is approximatéd &y, 30¢]. This support
can be reduced tf0, 30¢], since the function is even with respect/io Note that this remark holds for the
Bayesian Abel bound and the Bobrovsky-Zakai bound.

« As proposed by Weiss and Weinstein in [42], it is sometimes a good choice 46=s&f2. This approximation
is intuitively justified by the fact that the Weiss-Weinstein bound tends to the Bobrovsky-Zakai bound when
s tends to zero or one. Unfortunately, no sound proof that this result is true in general is available in the

literature. If we sets = 1/2,  (a, 3) is modified as follows:

n(3.h) = % (29NR (N —sin? (xhN) - } 5@ — 15
1,h) =0
n(L,h) =0, (90)
ﬁ(la—h) =0,
n(%,20) =1 (SNR (N — sin? (2rhN) — %%) - %) :

and the modified Weiss-Weinstein bound becomes

. in(2rhN) 2
2 e_% (QSNR(N—sm"‘(whN)—%%)—L)

WWB = sup—
no 2

(91)

. sin(4nh N 2
-1 (SNR(Nfsmz (2mhN)—1 Ffﬁmh)) )— %)

1—e¢
The resulting bound has approximatively the same computational cost as the BZB and the BAB.

May 9, 2008 DRAFT



18

C. Simulations

In order to illustrate our results on the different bounds, we present here a simulation result for the spectral
analysis problem.
We consider a scenario with' = 15 observations and, without loss of generality= 1. The estimator will be
the Maximum Likelihood Estimator (MLE) given for this model by
N-1
lyll* + Na® —2aRe{ZyZeﬂ”k0}] : (92)

k=0
We also use the Maximum A Posteriori (MAP) estimator given by

Opmr = argm@in

N-1 2
h : 1 2 2 * _j2mwko ¢
Orap = arg min ng <||y|| + Na“ —2a Re { kg_oykej + E . (93)
The global MSE will be computed by using the relation (3) and 1000 Monte-Carlo runs. Fa preori

probability density function of the parameter of interest, we chgose0 and o’ = % rack.
Figure (1) superimposes the global MSE of the MLE and of the MAP estimator, the Cramér-Rao bound, the
Bobrovsky-Zakai bound, the Bayesian Abel bound, and the Weiss-Weinstein bound with optimizationameer

s=1/2.

*
:+++++++++++++t*

Ty

+ i

Sa ¥ ;

Global MSE

““““ Bayesian Cramer—Rao bound
— — — Bobrovsky-Zakai bound
Bayesian Abel bound
= = Weiss-Weinstein bound
O Modified Weiss—-Weinstein bound
% Maximum Likelihood empirical global MSE
+

Maximum A Posteriori empirical global MSE
1 1 1 1 1 1 1

10°°

-10 -5 0 5 10 15 20 25

SNR (dB)

Fig. 1. Comparison of the global MSE of the MLE and of the MAP estimator, the Cramér-Rao bound, the Bobrovsky-Zakai bound, the
Bayesian Abel bound, and the Weiss-Weinstein bound with optimizationoseds = 1/2. N = 15 observations(rg = % rac?.

This figure shows the threshold behavior of both estimators when the SNR decreases. In contrast to the Cramér-

Rao bound, the Bobrovsky-Zakai bound, the Bayesian Abel bound, and the Weiss-Weinstein bound exhibit the

May 9, 2008 DRAFT



19

threshold phenomena. The Bayesian Abel bound is slightly higher than the Bobrovsky-Zakai bound and, conse-
qguently, leads to a better prediction of the threshold effect with the same computational cost. The Weiss-Weinstein
bounds obtained by numerical evaluation of Equations (88) and (91) are the same; therefore, s=1/2 seems to be the
optimum value in this problem. As expected by the addition of constraints, the Weiss-Weinstein bounds provide
a better prediction of the global MSE of the estimators in comparison with the Bobrovsky-Zakai bound and the
Bayesian Abel bound. The Weiss-Weinstein bound threshold value provides a better approximation of the effective

SNR at which the estimators experience the threshold behavior.

VI. CONCLUSION

In this paper, we proposed a framework to study the Bayesian minimal bounds on the mean square error of
the Weiss-Weinstein family. This framework is based on both the best Bayesian bound (MMSE) and a constrained
optimization problem. By rewriting the problem of the MMSEE as a continuous constrained optimization problem
and by relaxing these constraints, we reobtain the lower bounds of the Weiss-Weinstein family. Moreover, this
framework allows us to propose new minimal bounds. In this way we propose an extension of the Bayesian
Bhattacharyya bound and a Bayesian version of the Abel bound. Additionally, we give some closed-form expressions
of several minimal bounds for both a general Gaussian observation model with parameterized mean and a spectral

analysis model.

VIl. APPENDIX
A. Proof of Theorem 1

This proof is based on the three following lemmas.

Lemma 1:

Ci =0 (94)
Lemma 2:

Ci=0Cs (95)
Lemma 3:

Cr=0C (96)

Proof of Lemma 1:

e« Oy C Oy : we assume thatf (y,0) € F, [ [v(y,0) L&D aydo= [ f (v,6) dyds. Since,
(S19) (S19]

ol (y,0) f(y,0)] of (y,0)  0v(y,0)
20 =00 =+ 5

[y, 0), (97)

we have

//5[v (y,%)af (v.0)] 31)(83;9)“},79) dydaz//f (v,0) dydo (98)

e Q e Q
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- [
0 Q

: : : ov(y,0 :
Since the expression (99) holds for afiyy,6), if we choosef (y,0) =1+ %, we obtain

)) F (y.0) dydd = 0. (99)

//(1+8v Y6 ) dydezo:>1+8“gy9’9) —0=v(y.0) =z2(y) -6, (100)

wherez (y) is a function ofy only.
o (4 C (5 : on the other hand, if we assume thaly, ) = z (y) — 0, then

/ / g) 21 y’ D dydp - / / 0) 1 gg % dydo
// _(99 f(y’e)]—&—f(y,ﬁ)dydﬁ
e Q

//f (y,0)dydd VYf(y,0)eF (101)
e Q

These two items prove Lemmalll.
Proof of Lemma 2:

« C3C Cy:we assume thatf (y,0) € F such thatf [ f (y,6) dydf = 1 andVh such thatd + h € O,
00

/ / 0(,0) (f (y,0+ ) — f (y,0)) dydo=h. (102)
e Q
Then, whenh — 0, we have
// v.0) 2L > 0L .0) 11 — v (y.0) = = (y) — 6, (103)

thanks to the result of the first item of Lemma 1.

o (1 C Cs: on the other hand, if we assumey, ) = z (y) — 0, then by settingp =0 + h

//v(y,@)f(y,@—i—h)dydﬂ // f(y,0+h)dydo
)

//(Z(Y)—swh)f(y,w)dydso

e Q
= / / f(y, ) dyde + h, (104)
leading to
(z(y) = 0)(f(y.0+h)— f(y,0)) dydo=h, (105)

{O\

Vf (y,0) € F such thatfff ,0)dydf =1 andVh such thatd + h € ©.

These two items prove LemmalZ.

Proof of Lemma 3:
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(v,9)

e« Cy CCy:letL(y,n6) = ji(y”’) and assume thatf (y,6) € F such that[ [ f (y,6)dydf = 1,Vh such
(19}
thatd + h € © andVs € [0,1],

//v (v,0) [L° (3.0 + 1,0) — L' (y,0 — h,0)] f (y.0) dydd = h//Ll—s (.0 — h,0) f (y.6) dydd,
e Q e Q
(106)
Then, whens — 1, we obtain
[[ow0)Goen - feo)dvis—h = v(v.6)==() -0, (107)

e Q
thanks to the result of the first item of Lemma 2.

o (4 C Cy: on the other hand, if we assumey,§) = z (y) — 6, then by lettingp = 6 + h

//v(y,em(y,9+h,9)f<y,9)dedy - //(z(y)fe)LS(y,0+h,0>f(y,9>d0dy
O Q SV

// (z(y) =) L' * (y, 0 — h,o) f (y, ) dedy
e Q

+h//L1_s (v, — h, o) f (y, ) dedy, (108)
e Q
leading to

/ / o (y.0) [L* (y.0+ 1.0) — L'=* (.6 — h.6)] f (y.60) dédy = h / / L (y.0— h,0) f (y,0) dody,
e Q e Q
(109)
Vf (y,0) € F such that[ [ f (y,6) dydd = 1,Vh such tha) = h € © andVs € [0,1].
o0

These two items prove LemmalB.

Lemmas 1, 2, and 3 prove Theorenilil.

B. Proof of Theorem 2

Let &/ be a vector space of any dimension on the field of real numRBensith an inner product denoted by
(u,w), whereu andw are two vectors ot{. Let {g1,...,gx} be a family of K independent vectors éf and
c=|¢ - cx }T be a vector ofR”. We are interested in the solution of the minimization(afu) subject
to the following K linear constraintgu, g,) = ¢, k € [1, K].

Let G be the vectorial sub-space of dimensiéh generated by the elemen{g;,...,gx}. Then,vVu € U,

u = ug + du, whereug is the orthogonal projection af on G, i.e. the vectomg € G such thatu — ug, gx) =0,
k € [1, K] (see Figure (2) for a graphical representation).
Leta=| o; -+ ax ! be the coordinates alg in the basis{gi,...,gx} of G (i.e,,ug = fj aLgk)-

k=1
These coordinates satisfyu, g) = (ug, gx), k € [1, K]|. Moreover, ifu satisfies theX” constraints(u, gi) = ¢k,
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dua
u
(8 Pt LA
g
el
g1 o
Fig. 2. Graphical representation of the problem
k € [1, K], then
<u7 gk> = Ck
= (ug,gr) = ¢k
K
= < algl>gk> = Ck
1=1
K
= Z 7] <gl7 gk> = Ck, (110)
=1
i.e., by a matricial rewritindGa = ¢, whereG is the Gram matrix associated to the family:,...,gx}: G =

(g1, k). The equationGa = ¢ has for unique solutiom = G~'c. Let ug . be the vector of corresponding to
this solution. Thenyu € U/ and for satisfying theé{ aforementioned constraints we halig u) = (ug c, ug.c) +
(du,du) > (ug ¢, ug.), and the minimum is achieved falu = 0, which means thati; . is the solution of the

problem. The value of the minimal norm is given by

K K
(ugc,uge) = <Zakgk,zazgz>
k=1 =1
K K
= Zzakal<gk,gl>

k=11=1
= afGa
= (G )" GG e
= cI'G e (111)

C. Derivation of the Bayesian Abel bound

We have to calculate the quadratic foehG~'c (29). Since

//p (x,0+ h;)dfdx =1 Vh; € R, (112)
o0 Q
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and, due to (9),
//apxedﬁdx —0 Vi>1, (113)

0 Q

the matrixG = [ [gg”dfdx can now be written as the following partitioned matrix:
00

1 O1xm  O1xr
G=]| 0,x1 B r’ , (114)
0,x1 r D
where the element§B}, ; and {D}, ; of the matricesB (m x m) andD (r x r) are given by relation (37) and
(48), respectively, and the eIeme{dI‘} of the matrixI" (r x m) is given by

(r},, = // x9—|—h (XH)@p(x@)dad

06’
_ // x9+h 8p(x0)d9d (115)
06’
- B 17 T
Let G = andc = [OaThT}T, where o = [1 0 --- 0 (sizem x 1), andh =
I D
T ~
[ hy --- h, } . Since the first element efis null, only the right bottom corne@ ! (size (m + r) x (m + 1))
of G is of interest.G ! is given straightforwardly by
—1
- B 7
G '= . (116)
I D
Consequently, the Bayesian Abel bound dendetlB,, . is then given by
—1
B 17
BAB,,, = [a” h7] “l. (117)
r D h
After some algebraic effort, we obtain the final form:
BAB,,, =a"B a4+ ulJ !y, (118)
with
u=IB !a—h,
(119)
J=D-TB'T”.
|

D. Minimal bounds derivation for the Gaussian observation model with parameterized mean

1) Bayesian Cramér-Rao bound:he Bayesian Cramér-Rao bound can be divided into two terms [20]:
—1
2]
BCRB = ( / CRB™(0)p(0)do — / 9 np de) , (120)
S)
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whereCRB () is the standard (i.e., deterministic) Cramér-Rao bound given by [68]:

0,2

_,
9 om(6)
o0

CRB () =

0o
whered, is the true value of the parameter in the deterministic context.

The second term of (120) is

9?Inp (0 1 9?0 —p 2

/7892( )p(0) do = ~552 7(892 ) p(0)db
® (S

1 1

= —— [p(0)dl=——.
o o
Consequently,
BCRB

2) Bobrovsky-Zakai boundThe Bobrovsky-Zakai bound is given by

h2
ffp 2(v, 9+h)d do — 1

BZB = sup

The double integral in the last equation can be rewrltten as follows:

[ [P [P0 [ i

The term % becomes

Plylo+h) 1 o (2 m ) om0~ (- m (o) (- m(®)
p(yl0) (ro?)
L (P r2m@ )P~ mo)* 2 Re{y " (2m(6+h) —m(6))})
(ro2)™

Letx =y —2m (6 + h) + m (6), and note that

I = [ly[I* + 2m (6 + k) = m (8)|* = 2Re {y" (2m (6 + h) —m (9))} .

Consequently,
2
/P (%ﬁg)h)d}, - 12)N/e—;2(|x|2+2|m<9+h>|2—|m<e>|2—|2m<e+h>—m<9>|2)dx
o
= 12 Ne‘%z(Z\Im(a+h>Hz+nm<e>|\2—n2m(a+h>—m(9)n2)/e—u—znxwdx
(w0%) /

—_———

o2 Im(o-+h)~m(0)*

The Bobrovsky-Zakai bound is finally given by
h2
pzz()?;r)h o2z lm(0+h)—m(O)|? 79 _

BZB = sup
h
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(122)

(123)

(124)

(125)

(126)

(127)

(128)

DRAFT



3) Bayesian Abel boundiWe have to calculate

6(h) = //alnp y. 0

/

Q

dlnp (y|0)

0 Q

-3 <e+h>/<

Olnp (y|0)

dlnp(y|0) +np ()

y,0 + ) dydf

- h/ 9+h/ AS

The first term in (129) is given by

00

p(yl0+h)dy

00

(y|9+h)dyd9+ 5
C

Olnp(6)

)p(y9+h)dyd0

00

Q

1 /6(y—m(9))H (y —m(9))

mH
_ ;Re{aae(e)(m(e—i—h)—m(e))}.
For the second term in (129), we have
%/p(9+h) 8lna];(9)d9 - hig/(eu)p(Mh)d(;
(C] (C]
1
= =
%
Finally: .
o) = 25 + 2B [Re{ P D o - moop}].

4) Weiss-Weinstein boundie have to calculate

1 (e, B) =

This function can be modified as follows

p“(9+ﬁ)/p“(yw+ﬁ)
n(a,B) = ln/ dydf.
O NI
Let us first study the term

PPOOEE) L (el m@ )" (v mik8) (e - m(o)” (v-m(0)

P>t (yl0) (ro?)

_ ;Ne—(%2(||y|\2+aum(a+ﬁ)n2—<a—1>nm(e>n2—2Re{yH(am<e+ﬁ>—<a—1>m(e>)})
(mo?)

Letx=y — (em (6 + 3) — (¢ — 1) m (#)). Note that

2
1[I =
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Iy lI” + llam (6 + 8) —

ln// y"”ﬂ dydf.

(¢ —1)m

(0)]* = 2Re {y" (am (6 + 8) —

(a—1)m

p (64 h)do.

p(y|0+h)dy

2 [re{ 22 - men ) ps10+ 1) ay
Q

- 2Re{3m;(” (/yp<y|e+h>dy—m<e>)}

(0))} -
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(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)
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Consequently,

26

/P“ W0+5) 0 — 1 /6—(%2(HXHQ—Ham(9+ﬂ)—(a—1)m(9)H2+a\|m(9+ﬁ)l\2—(a—1)Hm(G)Hz)dx
P~ (y]0) (ro2)N A
_ ! ef(%2(fuamww)f(afl)m(e)||2+anm<o+ﬁ>u"’f<a71>||m<9>\|2)/6— b
(r0*)" A
————
=(mo?)N
— e Im(0+8)—m(9)|* (137)
For the second term,
0 1 — 1 [a(0 — )% —(a=1)(0—p)?
p* ( 1+6) 205[ (0+B8—p)>—(a—1)(0—p) ]. (138)
Pa (9) V2 09
Finally, the semi-invariant moment generating function is given by
0 (@.5) = In 1 /ea<<;21> ”m(@-ﬁ-ﬁ)—m(@)\ﬁ—ﬁ(0—(\/a(a—1)—a> h—p) (6+(v/ala=D+a) h—p) 6. (139)
V2mog
(S)
E. Bayesian bounds derivation for a spectral analysis problem
1) Cramér-Rao boundThe Bayesian Cramér-Rao bound is given by (123)
BCRB = (140)
QUGIE |:Hdm(0) H } ‘1
The termH Sm() H can be written
om (6 s = : :
’ m Ha 2(9) = ZaQ (j27rk632”k6) (—j27rke_32”k9)
k=0
= a247r2NZ k2= 2 (‘”T)QN(zN —1)(N - 1) (141)
= K== ,
which is independent af. Consequently, the Bayesian Cramér-Rao bound is
02
BCRB = pr 0 . (142)
SNRZZEN(@2N —1)(N—1)+1
2) Bobrovsky-Zakai boundThe Bobrovsky-Zakai bound is given by (128)
h2
BZB = S0 atah) 3 morm-m@ g5 | (143)
p(0)
In the case of our specific model (79), the tefm (6 + k) — m (9)]* can be written
N-1
lm (0 + h) — m(6‘)||2 — 2 (ej27rk(9+h) _ ej27rk0) (e—jka(9+h) _ e—jZTrkB)
k=0
N-1 . N-1
= a? (2—2Re{672”kh}) = 2a221 — cos (2mkh)
k=0 k=0
1sin (2rhN)
= - N = 144
( sin® (mhN) ~ 2 tan (wh) ) ’ (144)
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which is independent of. The termfp (9 ) dh becomes

2 _ 2
/p (9(;) h) & = 21 Ly 202 —dhptp? /e 3 [0>+20(2h— ,L)]de
p V4 7r09 A
_ 1 [op2_ (2h—p)? n2
_ S [2h7 —dhu+i?]+ S08= o3, (145)

= [6%+26(2h—p)]

where the termfe 2“9 df is given by [71] page 355, equation (BI((28))(1),

e
/ ety - VT s (146)
abs (p)
Finally, the Bobrovsky-Zakai is given by
h2
BZB = Sl}ip 4SNR(N sin2 (hN)— L a.:;(r?&hhzzr) )_p% (147)
e 7 —1
3) Bayesian Abel boundiWe have to calculate (132)
1 om* (¢
o) = % + 2B [Re{ P D o) - mop}] (148)

The termRe {amTHe(e) (m(@+h)—m (9))} can be rewritten as follows:

Re{‘ww) (m (6 + h) —m<e>)} = Re{aQaSH (6) (s(@+h) —s(9))}

00 00

N-1 ) He—i2mko
—  42Re Z (6]27rk7(9+ll) _ e]27rk9) i
k=0
N—-1 .
= —27ma’Re { >k (e — 1)}
k=0

N-1
= 2ma® Z ksin (2wkh)
k=0

_ cos (2rhN) | 1
= 7a? <Ntan(77h) — sin (27hN) (MW + N)) , (149)

which is independent of. Consequently,

1 2aSNR [ _cos(2rhN) | 1

T
4) Weiss-Weinstein boundife have to calculate (139),

(0+8) 2@ m@+p)-m())
Q, = ln/i S e do
77( 5) po—1 (9)

— In ( 2a(a— 1)SNR(N sin?(rGN)—1 S':;jg;ﬂﬁ]y) /p 9 +ﬂ ) 7 (151)
T

(C]

thanks to (144) and to the independenceddf the term|m (6 + 3) — m (6)]°.
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The remaining term is given by

where [e 75

/p“ O+5) 4y _ 1 e—ﬁ[aﬁz—wﬁlwuz]/e—ﬁ[‘?z%@(aﬁ—u)]da
p=1(0) V2moy
O S]
—% afB?—2aBpu+pu? +M —% 11—«
— e 20‘6 [ ﬁ ’6# F ] 20-9 —e 20'9 ( )7 (152)

Sz [02+20(aB—m)] . . .
df is obtained thanks to [71] page 355, Equation (BI((28))(1).

S)
Consequentlyy («, §) is given by

(1]

(2]

(3]
(4]

(5]

6]
(7]

(8]
(9]
[20]

(11]

[12]
(23]

[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]

1sin(27rﬁN)) s ) ' (153)

n(a,f) =a(a—1) (2SNR (N —sin® (wpN) — 5= o) 27
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