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Abstract

Minimal bounds on the mean square error are generally used in order to predict the best achievable performance

of an estimator for a given observation model. In this paper we are interested in the Bayesian bound of the Weiss-

Weinstein family. Among this family, we have Bayesian Cramér-Rao bound, the Bobrovsky-MayerWolf-Zakaï bound,

the Bayesian Bhattacharyya bound, the Bobrovsky-Zakaï bound, the Reuven-Messer bound, and the Weiss-Weinstein

bound. We present a unification of all these minimal bounds based on a rewriting of the minimum mean square error

estimator and on a constrained optimization problem. With this approach, we obtain a useful theoretical framework

to derive new Bayesian bounds. For that purpose, we propose two bounds. First, we propose a generalization of the

Bayesian Bhattacharyya bound extending the works of Bobrovsky, Mayer-Wolf, and Zakaï. Second, we propose a

bound based on the Bayesian Bhattacharyya bound and on the Reuven-Messer bound, representing a generalization

of these bounds. The proposed bound is the Bayesian extension of the deterministic Abel bound and is found to

be tighter than the Bayesian Bhattacharyya bound, the Reuven-Messer bound, the Bobrovsky-Zakaï bound, and the

Bayesian Cramér-Rao bound. We propose some closed-form expressions of these bounds for a general Gaussian

observation model with parameterized mean. In order to illustrate our results, we present simulation results in the

context of a spectral analysis problem.
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NOTATIONS

The notational convention adopted in this paper is as follows: italic indicates a scalar quantity, as inA; lowercase

boldface indicates a vector quantity, as ina; uppercase boldface indicates a matrix quantity, as inA. Re {A} is

the real part ofA andIm {A} is the imaginary part ofA. The complex conjugation of a quantity is indicated by a

superscript * as inA∗. The matrix transpose is indicated by a superscriptT as inAT , and the complex conjugate

plus matrix transpose is indicated by a superscriptH as inAH =
(
AT

)∗
. The n-th row andm-th column element

of the matrixA is denoted by{A}n,m. IN denotes the identity matrix of sizeN ×N . 0N×M is a N ×M matrix

of zeros.‖.‖ denotes the norm.|.| denotes the modulus.abs (.) denotes the absolute value.δ (.) denotes the Dirac

delta function.E [.] denotes the expectation operator with respect to a density probability function explicitly given

by a subscript.Ω is the observation space andΘ the parameter space.

I. I NTRODUCTION

Minimal bounds on the Mean Square Error (MSE) provide the ultimate performance that an estimator can expect

to achieve for a given observation model. Consequently, they are used as a benchmark in order to evaluate the

performance of an estimator and to determine if an improvement is possible. The Cramér-Rao bound [3]–[8] has

been the most widely used by the signal processing community and is still under investigation from a theoretical

point of view (particularly throughout the differential variety in the Riemannian geometry framework [9]–[14]) as

from a practical point of view (see, e.g., [15]–[19]). But the Cramér-Rao bound suffers from some drawbacks when

the scenario becomes critical. Indeed, in a non-linear estimation problem, when the parameters have finite support,

there are three distinct MSE areas for an estimator [20] page 273, [21]. For a large number of observations or for a

high Signal-to-Noise Ratio (SNR), the estimator MSE is small and the area is called an asymptotic area. When the

scenario becomes critical, i.e., when the number of observations or the SNR decreases, the estimator MSE increases

dramatically due to the outlier effect, and the area is called threshold area. Finally, when the number of observations

or the SNR is low, the estimator criterion is hugely corrupted by the noise and becomes a quasi-uniform random

variable on the parameter support. Since in this last area the observations bring almost no information, it is called

no information area. The Cramér-Rao bound is used only in the asymptotic area and is not able to handle the

threshold phenomena (i.e., when the performance breaks down).

To fill this lack, a plethora of other minimal bounds tighter than the Cramér-Rao bound has been proposed and

studied. All these bounds have been derived by way of several inequalities, such as the Cauchy-Schwartz inequality,

the Kotelnikov inequality, the Hölder inequality, the Ibragimov-Hasminskii inequality, the Bhattacharyya inequality

and the Kiefer inequality. Note that due to this diversity, it is sometimes difficult to fully understand the underlying

concept and the difference between all these bounds; consequently it is difficult to apply these bounds to a specific

estimation problem.

Minimal bounds on the MSE can be divided into two categories: the deterministic bounds for situations in which

the true vector of the parametersθ0 is assumed to be deterministic and the Bayesian bounds for situations in which

the vector of parametersθ is assumed to be random with ana priori probability density functionp (θ). Among
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the deterministic bounds, we have the well-known Cramér-Rao bound; the Bhattacharyya bound [22], [23]; the

Chapman-Robbins bound [24]–[26], the Barankin bound [27], [28], the Abel bound [29]–[31]; and the Quinlan-

Chaumette-Larzabal bound [32]. Bayesian bounds can be subdivided into two categories: the Ziv-Zakaï family,

derived from a binary hypothesis testing problem (and more generally from anM -ary hypothesis testing problem),

and the Weiss-Weinstein family, derived (as the deterministic bounds) from a covariance inequality principle. The

Ziv-Zakaï family contains the Ziv-Zakaï bound [33], the Bellini-Tartara bound [34], the Chazan-Zakaï-Ziv bound

[35], the Weinstein bound [36], the Bell-Steinberg-Ephraim-VanTrees bound [37], and the Bell bound [38]. The

Weiss-Weinstein family contains the Bayesian Cramér-Rao bound [20] page 72, and 84, the Bobrovsky-MayerWolf-

Zakaï bound [39], the Bayesian Bhattacharyya bound [20] page 149, the Bobrovsky-Zakaï bound [40], the Reuven-

Messer bound [41], and the Weiss-Weinstein bound [42]. A nice tutorial about both families can be found in the

recent book of Van Trees and Bell [43].

The deterministic bounds are used as a lower bound of thelocal MSE in θ0; i.e.,

MSEL (θ0) =
∫

Ω

(
θ̂ (y)− θ0

)(
θ̂ (y)− θ0

)T

p (y|θ0) dy, (1)

wherey ∈Ω is a complex observation vector,p (y|θ0) is the likelihood of the observations parameterized by the

true parameter valueθ0, and θ̂ (y) is an estimator ofθ0.

On the other hand, Bayesian bounds are used as a lower bound of theglobal MSE; i.e.,

MSEG =
∫

Θ

∫

Ω

(
θ̂ (y)− θ

)(
θ̂ (y)− θ

)T

p (y, θ) dydθ, (2)

where θ ∈ Θ is the random parameter vector with ana priori probability density functionp (θ) = p(y,θ)
p(y|θ) and

p (y, θ) is the joint probability function of the observations and of the parameters.

In the deterministic context, minimal bounds—in particular the Chapman-Robbins bound and the Barankin

bound—are generally used in order to predict the aforementioned threshold effect which cannot be handled by

the Cramér-Rao bound. The Chapman-Robbins bound and the Barankin bound have already been successfully

applied to several estimation problems [28], [31], [44]–[55]. The use of the Abel bound, which can also handle the

threshold phenomena, is still marginal [56].

Contrary to the deterministic bounds, the Bayesian bounds take into account the parameter support throughout

the a priori probability density functionp (θ), and they give the ultimate performances of an estimator on the three

aforementioned areas of the global MSE. These bounds give the performance of the Bayesian estimator, such as

the Maximum a Posteriori (MAP) estimator or the Minimum Mean Square Error Estimator (MMSEE), and can be

used in order to know the global performance of the deterministic estimators such as the Maximum Likelihood

estimator (MLE), since

MSEG =
∫

Θ

MSEL (θ) p (θ) dθ. (3)

The reader is referred to Xuet al. [57]–[59], where the MLE performances are analyzed in the context of

an underwater acoustic problem by way of the Ziv-Zakaï and of the Weiss-Weinstein bounds. The Ziv-Zakaï
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family bounds have been applied in other signal processing areas: time-delay estimation [60]; direction-of-arrival

estimation [38], [61], [62]; and digital communication [63]. On the other hand, the Weiss-Weinstein bound has been

less investigated: the aforementioned Xuet al. works and in the framework of digital communication [64].

This article presents a new unified approach for the establishment of the Weiss-Weinstein family bounds. Note

that the unification of the deterministic bounds has already been proposed by [65] and [66] based on a constrained

optimization problem. A unification has been proposed by Bellet al. in [37], [38] for the Ziv-Zakaï family.

Concerning the Weiss-Weinstein family unification, a first approach has been given by Weiss and Weinstein in

[67]. This approach is based on the following inequality proved by the authors:

MSEG ≥ E2
y,θ [θψ (y, θ)]

Ey,θ

[
ψ2 (y, θ)

] , (4)

where the functionψ (y, θ) must satisfied
∫

Θ

ψ (y, θ) p (y, θ) dθ = 0. (5)

Weiss and Weinstein gave several functionsψ (y, θ) satisfying (5) for which they again obtain the Bayesian

Cramér-Rao bound, the Bayesian Bhattacharyya bound, the Bobrovsky-Zakaï bound, and the Weiss-Weinstein bound.

Moreover, a functionψ (y, θ) satisfying (5) leading to the Bobrovsky-MayerWolf-Zakaï bound is given in [38].

Unfortunately, there are no general rules to findψ (y, θ). In this contribution, the Weiss-Weinstein family unification

is based on the best Bayesian bound, i.e., the MSE of the MMSEE. By rewriting the MMSEE and by using a

constrained optimization problem similar to one derived for the unification of deterministic bounds [65], [66],

we unify the Bayesian Cramér-Rao bound, the Bobrovsky-MayerWolf-Zakaï bound, the Bayesian Bhattacharyya

bound, the Bobrovsky-Zakaï bound, the Reuven-Messer bound (for which no functionψ (y, θ) is proposed in the

Weiss-Weinstein approach), and the Weiss-Weinstein bound. This approach brings a useful theoretical framework

to derive new Bayesian bounds.

For that purpose, we propose two bounds. First, we propose a generalization of the Bayesian Bhattacharyya

bound extending the works of Bobrovsky, Mayer-Wolf, and Zakaï. Second, we propose a bound based on the

Bayesian Bhattacharyya bound and on the Reuven-Messer bound, one that represents a generalization of these

bounds. This bound is found to be tighter than the Bayesian Bhattacharyya bound, the Reuven-Messer bound, the

Bobrovsky-Zakaï bound, and the Bayesian Cramér-Rao bound. In order to illustrate our results, we propose some

closed-form expressions of the minimal bounds for a Gaussian observation model with parameterized mean widely

used in signal processing, and we apply it to a spectral analysis problem for which we present simulation results.

II. M INIMUM MSE REFORMULATION

In this section we start by reformulating the MMSEE as a constrained optimization problem. Then, we rewrite

the underlying constraint under three different forms that will be of interest for our proposed unification.

In the Bayesian framework, the minimal global MSE and consequently the best Bayesian bound is the MSE of

the MMSEE:θ̂ (y) =
∫
Θ

θp (θ|y) dθ, wherep (θ|y) is thea posterioriprobability density function of the parameter.
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Unfortunately, it is generally impossible to obtain a closed-form expression of this MSE. The MMSEE is the solution

of the following problem:

min
θ̂(y)

∫

Θ

∫

Ω

(
θ̂ (y)− θ

)2

p (y, θ) dydθ. (6)

Let L2
p be the set of functionv (y, θ) such that

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ is defined. LetC1 ⊂ L2
p be the subset

of function satisfying

v (y, θ) = z (y)− θ, (7)

wherez (y) is a function only ofy.

Consequently, the MMSEE (6) is the solution of the following constrained optimization problem




min
v

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ

subject tov (y, θ) ∈ C1

(8)

Let F be the set of functions,f (y, θ), such that∀v (y, θ) ∈ L2
p




lim
θ→±∞

v (y, θ) f (y, θ) = 0,

lim
θ→±∞

∂f(y,θ)
∂θ = 0.

(9)

Let us now introduce the three following subsets of functions belonging toL2
p

• SubsetC2

C2 =



v (y, θ) ∈ L2

p

/
∀f ∈ F ,

∫

Θ

∫

Ω

v (y, θ)
∂f (y, θ)

∂θ
dydθ=

∫

Θ

∫

Ω

f (y, θ) dydθ



 . (10)

• SubsetC3

C3 =





v (y, θ) ∈ L2
p

/ ∀f ∈ F , and
∫
Θ

∫
Ω

f (y, θ) dydθ = 1, and∀h such thatθ + h ∈ Θ,

∫
Θ

∫
Ω

v (y, θ) (f (y, θ + h)− f (y, θ)) dydθ=h





. (11)

• SubsetC4

C4 =





v (y, θ) ∈ L2
p

/ ∀f ∈ F , and
∫
Θ

∫
Ω

f (y, θ) dydθ = 1, and∀h such thatθ ± h ∈ Θ, and,∀s ∈ [0, 1] ,
∫
Θ

∫
Ω

v (y, θ)
[
Ls (y, θ + h, θ)− L1−s (y, θ − h, θ)

]
f (y, θ) dydθ

= h
∫
Θ

∫
Ω

L1−s (y, θ − h, θ) f (y, θ) dθdy





,

(12)

with L (y, η, θ) = f(y,η)
f(y,θ) .

Theorem 1 below shows that, although these four subsets are generated in a different manner, they are the same.

Theorem 1:

C1 = C2 = C3 = C4. (13)

The proof of theorem 1 (13) is given in Appendix A.
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Consequently, the MMSEE (6) (Best Bayesian Bound) is the solution of the following constrained optimization

problem∀Ci i = 1, . . . , 4 



min
v

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ

subject tov (y, θ) ∈ Ci

(14)

III. W EISS-WEINSTEIN FAMILY UNIFICATION

In the light of the previous analysis, it appears a natural manner to introduce Bayesian bound lower than the

MMSEE. Indeed, ifPi is a subset ofCi, the solution of



min
v

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ

subject tov (y, θ) ∈ Pi

(15)

will be also a lower bound of the MMSEE. In this paper, we will first show that an appropriate choice ofPi leads

to the Bayesian bounds of the Weiss-Weinstein family. Second, we will show how this approach can be used in

order to build new minimal bounds, particularly, by solving the following constrained optimization problem




min
v

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ

subject tov (y, θ) ∈ Pi ∩ Pj i 6= j

(16)

In this section, we restrictC2, C3, andC4 in order to obtain a general framework to create minimal bounds. Then,

by way of a constrained optimization problem for which we give an explicit solution we unify the bounds of the

Weiss-Weinstein family.

A. A general class of lower bounds based onC2, C3, andC4

Thanks to Theorem 1, we have proposed four equivalent sets of functionsv (y, θ) leading to the MMSEE. Note

that this equivalence holds for

∀f (y, θ) ∈ F in the subsetC2, (17)



∀f (y, θ) ∈ F such that

∫
Θ

∫
Ω

f (y, θ) dydθ = 1,

∀h such thatθ + h ∈ Θ.

in the subsetC3, (18)





∀f (y, θ) ∈ F such that
∫
Θ

∫
Ω

f (y, θ) dydθ = 1,

∀h such thatθ ± h ∈ Θ,

∀s ∈ [0, 1] .

in the subsetC4. (19)

Consequently, if we take a finite set of functionsf (y, θ) , a finite set of valuesh, and a finite set of valuess,

we will find bounds lower than the best Bayesian bounds and consequently a general class of minimal bounds on

the MSE.

In this way,C2, C3, andC4 are restricted, respectively, as follows
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P2: 



for a finite set of functionsfi (y, θ) ∈ F , i = 1...r,
∫
Θ

∫
Ω

v (y, θ) ∂fi(y,θ)
∂θ dydθ=

∫
Θ

∫
Ω

fi (y, θ) dydθ.
(20)

P3: 



for a particular functionf (y, θ) ∈ F such that
∫
Θ

∫
Ω

f (y, θ) dydθ = 1,

for a finite set of valuehi such thatθ + hi ∈ Θ, i = 1...r,
∫
Θ

∫
Ω

v (y, θ) (f (y, θ + hi)− f (y, θ)) dydθ=hi.

(21)

P4:




for a particular functionf (y, θ) ∈ F such that
∫
Θ

∫
Ω

f (y, θ) dydθ = 1,

for a finite set of valuehi such thatθ + hi ∈ Θ, i = 1...r,

for a finite set of valuesi such thatsi ∈ [0, 1] , i = 1...r,
∫
Θ

∫
Ω

v (y, θ)
[
Lsj (y, θ + hi, θ)− L1−sj (y, θ − hi, θ)

]
f (y, θ) dydθ = hi

∫
Θ

∫
Ω

L1−sj (y, θ − hi, θ) f (y, θ) dθdy,

(22)

with L (y, η, θ) = f(y,η)
f(y,θ) .

P2, P3, andP4 define a set of finite constraints, and the problem (15) becomes a classical linear constrained

optimization problem 



min
v

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ

subject to
∫
Θ

∫
Ω

v (y, θ) g̃k (y, θ) dydθ = ck k = 1...K,
(23)

wheregk (y, θ) andck are the functions and the scalars involved inP2, P3, andP4.

For P2

g̃k (y, θ) =
∂fk (y, θ)

∂θ
, ck =

∫

Θ

∫

Ω

fk (y, θ) dydθ andK = r. (24)

For P3

g̃k (y, θ) = f (y, θ + hk)− f (y, θ) , ck = hk andK = r. (25)

For P4 



g̃k (y, θ) =
[
Lsk (y, θ + hk, θ)− L1−sk (y, θ − hk, θ)

]
f (y, θ) ,

ck = hk

∫
Θ

∫
Ω

L1−sk (y, θ − hk, θ) f (y, θ) dθdy,

andK = r.

(26)

Theorem 2 below gives the solution of the problem (23). Note that this theorem has already been used in the

case of a deterministic parameter in [17].

Theorem 2:Let x ∈ RN be a real vector andp (x) andq (x) be two functions ofRN → R. Let

〈p (x) , q (x)〉 =
∫

RN

p (x) q (x) dx, (27)
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be an inner product of these two functions and its associate norm‖p (x)‖2 = 〈p (x) , p (x)〉. Let u (x) andg0 (x),...,

gK (x) be a set of functions ofRN → R, and letc0, c1,..., cK andK + 1 be real numbers. Then, the solution of

the constrained optimization problem leading to the minimum of‖u (x)‖2 under the followingK + 1 constraints

〈u (x) , gk (x)〉 = ck k = 0, ...,K, (28)

is given by 



min
u
‖u (x)‖2 = cT G−1c,

subject to (28),
(29)

with

c =
[

c0 c1 · · · cK

]T

, (30)

and

{G}m,n = 〈gm (x) , gn (x)〉 . (31)

The proof of Theorem 2 (29) is given in Appendix B.

B. Application to the Weiss-Weinstein family

Using (29),P2, P3, andP4, we have built a general framework to obtain Bayesian minimal bounds on the

MSE. In this section, we apply this framework and we revisit the Bayesian bounds of the Weiss-Weinstein family.

Let x =
[

yT θ
]

andu (x) = v (y, θ)
√

p (y, θ) (i.e. g̃k (y, θ) =
√

p (y, θ)gk (y, θ)). Note that Theorem 2 still

holds for a set of complex observationsȳ by letting y =
[

Re
{
ȳT

}
Im

{
ȳT

} ]T

.

Moreover, due to the restriction at some particular values off (y, θ), h, ands, it is still possible to add constraints

with our prior on the MMSEE in order to achieve tighter bounds. Here we will use the natural constraints of a null

bias in terms of the joint probability function;i.e.,
∫
Θ

∫
Ω

v (y, θ) p (y, θ) dydθ=0, wherep (y, θ) is the joint density

of the problem (i.e., g0 (y,θ) =
√

p (y,θ) andc0 = 0).

a) Bayesian Cramér-Rao bound:By using the setP2 with K = 1 and f1 (y, θ) = p (y, θ) (consequently,
∫
Θ

∫
Ω

f1 (y, θ) dydθ=1), we obtain the following set of constraints:





c =
[

0 1
]T

,

g0 (y,θ) =
√

p (y,θ),

g1 (y,θ) = 1√
p(y,θ)

∂p(y,θ)
∂θ .

(32)

Matrix G involved in Theorem 2 is

G =




1 0

0
∫
Θ

∫
Ω

(
∂ ln p(y,θ)

∂θ

)2

p (y,θ) dydθ


 , (33)

since
∫
Θ

∫
Ω

∂p(y,θ)
∂θ dydθ = 0.
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Finally

cT G−1c =




∫

Θ

∫

Ω

(
∂ ln p (y, θ)

∂θ

)2

p (y,θ) dydθ



−1

= BCRB, (34)

which is the Bayesian Cramér-Rao bound [20] page 72, and 84.

b) Bayesian Bhattacharyya bound:By using the setP2 with K = r and fk (y, θ) = ∂k−1p(y,θ)

∂θk−1 , we obtain

the following set of constraints:




c =
[

0 1 0 · · · 0
]T

,

g0 (y,θ) =
√

p (y,θ),

gk (y,θ) = 1√
p(y,θ)

∂kp(y,θ)

∂θk k = 1, . . . , K.

(35)

We assume that the joint probability density function is such thatlim
θ→±∞

∂k−1p(y,θ)

∂θk−1 = 0 for k = 3, . . . ,K. With

this assumption and Eqn. (9), we have ,

cT G−1c =
{
B−1

}
1,1

= BhattB, (36)

where

{B}i,j =
∫

Θ

∫

Ω

1
p (y,θ)

∂ip (y,θ)
∂θi

∂jp (y,θ)
∂θj

dydθ, (37)

which is the Bayesian Bhattacharyya bound [20] page 149.

c) Bobrovsky-MayerWolf-Zakaï bound:By using the setP2 with K = 1 and f1 (y, θ) = q (y, θ) p (y, θ) ,

whereq (y, θ) is any function such thatf1 (y, θ) satisfies (9), we obtain the following set of constraints:




c =
[

0
∫
Θ

∫
Ω

q (y, θ) p (y, θ) dydθ

]T

,

g0 (y,θ) =
√

p (y,θ),

g1 (y,θ) = 1√
p(y,θ)

∂[p(y,θ)q(y,θ)]
∂θ .

(38)

Due to (9),
∫
Θ

∫
Ω

∂q(y,θ)p(y,θ)
∂θ dydθ = 0 and the matrixG involved in Theorem 2 is

G =




1 0

0
∫
Θ

∫
Ω

1√
p(y,θ)

∂[p(y,θ)q(y,θ)]
∂θ dydθ


 . (39)

Finally,

cT G−1c =

(∫
Θ

∫
Ω

q (y, θ) p (y, θ) dθdy
)2

∫
Θ

∫
Ω

1
p(y,θ)

(
∂[p(y,θ)q(y,θ)]

∂θ

)2

dydθ

= BMZB (q (y, θ)) . (40)
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We recognize the Bobrovsky-MayerWolf-Zakaï bound [39], which is an extension of the Bayesian Cramér-Rao

bound, since

BMZB (1) = BCRB. (41)

d) Bobrovsky-Zakaï bound:We choose here that the particular value off (y, θ) = p (y, θ), the joint density

probability function of the problem. Consequently,
∫
Θ

∫
Ω

f (y, θ) dydθ=1.

By using the setP3 with K = 1, we obtain the following set of constraints:



c =
[

0 h
]T

,

g0 (y,θ) =
√

p (y,θ),

g1 (y,θ) = p(y,θ+h)−p(y,θ)√
p(y,θ)

.

(42)

Matrix G involved in Theorem 2 is

G =




1 0

0
∫
Θ

∫
Ω

(p(y,θ+h)−p(y,θ))2

p(y,θ) dydθ


 . (43)

Finally,

cT G−1c =
h2

∫
Θ

∫
Ω

p2(y,θ+h)
p(y,θ) dydθ − 1

= BZB (h) . (44)

Sinceh is a parameter left to the user, the highest bound that can be obtained with (44) is given by

BZB = sup
h

BZB (h) = sup
h

h2

∫
Θ

∫
Ω

p2(y,θ+h)
p(y,θ) dydθ − 1

, (45)

which is the Bobrovsky-Zakaï bound [40].

e) Reuven-Messer bound:We choose here that the particular value off (y, θ) = p (y, θ), the joint density

probability function of the problem. Consequently,
∫
Θ

∫
Ω

f (y, θ) dydθ=1.

In order to obtain a bound tighter than the Bobrovsky-Zakaï bound (i.e., P3 → C3), we use the setP3 with

K = r. We then obtain the following set of constraints:





c =
[

0 hT
]T

,

g0 (y,θ) =
√

p (y,θ),

gk (y,θ) = p(y,θ+hk)−p(y,θ)√
p(y,θ)

k = 1, . . . , r.

(46)

whereh =
[

h1 · · · hr

]T

.

Matrix G involved in Theorem 2 is

G =




1 0 · · · 0

0
... D

0




, (47)
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whereD (r × r) is defined as

{D}i,,j =
∫

Θ

∫

Ω

(p (y,θ + hi)− p (y,θ)) (p (y,θ + hj)− p (y,θ))
p (y,θ)

dydθ

=
∫

Θ

∫

Ω

p (y,θ + hi) p (y,θ + hj)
p (y,θ)

dydθ − 1. (48)

Finally,

cT G−1c = hT D−1h

= RMB (h) . (49)

As for the Bobrovsky-Zakaï bound, sinceh is a parameter vector left to the user, the highest bound that can be

obtained with (49) is given by

RMB = sup
h

RMB (h) = sup
h

hT D−1h, (50)

which is a particular case1 of the Reuven-Messer bound [41].

f) Weiss-Weinstein bound:We choose here that the particular value off (y, θ) = p (y, θ), the joint density

probability function of the problem. Consequently,
∫
Θ

∫
Ω

f (y, θ) dydθ=1.

By using the setP4 with K = r, we obtain the following set of constraints:




c =
[

0 h1Ey,θ

[
L1−s1 (y, θ − h1, θ)

] · · · hkEy,θ

[
L1−sk (y, θ − hk, θ)

] ]T

,

g0 (y,θ) =
√

p (y,θ),

gk (y,θ) =
√

p (y,θ)
(
Lsk (y, θ + hk, θ)− L1−sk (y, θ − hk, θ)

)
k = 1, . . . , r.

(51)

Let

ξ =
[

h1Ey,θ

[
L1−s1 (y, θ − h1, θ)

] · · · hrEy,θ

[
L1−sr (y, θ − hr, θ)

] ]T

, (52)

h =
[

h1 · · · hr

]T

, (53)

s =
[

s1 · · · sr

]T

. (54)

The application of Theorem 2 leads to

cT G−1c = ξT W−1ξ

= WWB (h, s) , (55)

where

{W}i,,j = Ey,θ[
(
Lsi (y, θ + hi, θ)− L1−si (y, θ − hi, θ)

) (
Lsj (y, θ + hj , θ)− L1−sj (y, θ − hj , θ)

)
]. (56)

1In 1997, Reuven and Messer proposed a hybrid minimal bound based on the Barankin bound for both random and non-random vector of

parameters. Here, only the random case is considered.
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As for the Bobrovsky-Zakaï bound and the Reuven-Messer bound, sinceh and s are parameter vectors left to

the user, the highest bound that can be obtained with (55) is given by

WWB = sup
h,s

WWB (h, s) = sup
h,s

ξT W−1ξ. (57)

We recognize the Weiss-Weinstein bound [42].

IV. N EW MINIMAL BOUNDS

The framework proposed in the last section allows us to rederive all the bounds of the Weiss-Weinstein family

by way of a constrained optimization problem. But this framework is also useful for deriving new lower bounds.

In this section, we propose two lower bounds.

A. Some global classes of Bhattacharyya bounds

In [39], Bobrovsky, Mayer-Wolf, and Zakaï propose an extension of the Bayesian Cramér-Rao bound given by

Equation (40). The advantage of this bound is the degree of freedom given byq (y, θ). Indeed, the authors give some

examples for which use of a properly chosen functionq (y, θ) leads to useful bounds. Moreover, whenp (y, θ) does

not satisfy the regularity assumption given in [20] (e.g., for uniform random variables), a properly chosenq (y, θ)

can solve the problem. Here we obtain an extension of this bound and of the Bayesian Bhattacharyya bound in a

straightforward manner by mixing the constraints of the Bobrovsky-MayerWolf-Zakaï bound and the constraints of

the Bayesian Bhattacharyya bound.

By using the setP2 with K = r and fk (y, θ) = ∂k−1[q(y,θ)p(y,θ)]

∂θk−1 , where q (y, θ) is any function such that

fk (y, θ) satisfies (9), we obtain the following set of constraints:




c =
[

0
∫
Θ

∫
Ω

q (y, θ) p (y, θ) dydθ 0 · · · 0
]T

,

g0 (y,θ) =
√

p (y,θ),

gk (y,θ) = 1√
p(y,θ)

∂k[q(y,θ)p(y,θ)]

∂θk k = 1, . . . , K.

(58)

We assume that the functionsq (y, θ) andp (y, θ) are such that lim
θ→±∞

∂k−1q(y,θ)p(y,θ)

∂θk−1 = 0 for k = 3, . . . , K.

With this assumption and Eqn. (9), we have ,

cT G−1c =

(∫
Θ

∫
Ω

q (y, θ) p (y, θ) dydθ

)2

{
B̄−1

}
1,1

(59)

where
{
B̄

}
i,j

=
∫

Θ

∫

Ω

1
p (y,θ)

∂i [q (y, θ) p (y,θ)]
∂θi

∂j [q (y, θ) p (y,θ)]
∂θj

dydθ. (60)
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B. The Bayesian Abel bound

In this section, we propose a new minimal bound on the MSE based on our framework and on the Abel works on

deterministic bounds [29], [30]. In the deterministic parameter context, the Cramér-Rao bound and the Bhattacharyya

bound account for thesmall estimation error(near the true value of the parameters). The Chapman-Robbins bound

and the Barankin bound account for thelarge estimation errorgenerally due to the appearance of outliers which

creates the performance breakdown phenomena. In [29] [30], Abel combined the two kinds of bounds in order

to obtain a bound that accounts for both local and large errors. The obtained deterministic Abel bound leads to

a generalization of the Cramér-Rao, the Bhattacharyya, the Chapman-Robbins, and the Barankin bounds. As the

deterministic bounds, the Bayesian Cramér-Rao bound and the Bayesian Bhattacharyya bound aresmall error

bounds, as compared to the Bobrovsky-Zakaï bound and the Reuven-Messer bound which arelarge error bounds.

The purpose here is to apply the idea of Abel in the Bayesian context, i.e. to derive a bound that combines the

Bayesian small and large error bounds. This application will be accomplished by way of the constrained optimization

problem introduced in the last section. Our Bayesian version of the Abel bound is derived by mixing the constraints

of the Reuven-Messer bound and the Bayesian Bhattacharyya bound and, thus, represents a generalization of these

bounds. Consequently, we are solving the following constrained optimization problem




min
v

∫
Θ

∫
Ω

v2 (y, θ) p (y, θ) dydθ

subject tov (y, θ) ∈ P2 ∩ P3

(61)

By combining the Bayesian Bhattacharyya constraints (35) and the Reuven-Messer constraints (46), i.e, by

concatenating both vectorsg = [g0 (y, θ) , g1 (y, θ) , ..., gK (y, θ)]T andc from the Bayesian Bhattacharyya bound

of order m and from the Reuven-Messer bound of orderr, we obtain the following new set ofK = m + r + 1

constraints2,

g =
1√

p (y, θ)




p (y, θ)
∂p(y,θ)

∂θ

...
∂mp(y,θ)

∂θm

−−−−−−
p (y, θ + h1)− p (y, θ)

...

p (y, θ + hr)− p (y, θ)




andc =




0

1

0
...

0

−−
h1

...

hr




. (62)

The calculus are detailed in Appendix C, and the theorem 2 leads to

cT G−1c = BABm,r (h) = αT B−1α + uT J−1u, (63)

2The first constraint of the two bounds is the same.
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with 



u = ΓB−1α− h, r × 1,

J = D− ΓB−1ΓT , r × r,

α =
[

1 0 · · · 0
]T

, m× 1,

h =
[

h1 h2 · · · hr

]T

, r × 1,

{D}i,,j =
∫
Θ

∫
Ω

p(y,θ+hi)p(y,θ+hj)
p(y,θ) dydθ − 1, r × r,

{B}i,j =
∫
Θ

∫
Ω

1
p(y,θ)

∂ip(y,θ)
∂θi

∂jp(y,θ)
∂θj dydθ, m×m,

{Γ}i,j =
∫
Θ

∫
Ω

p(y,θ+hi)
p(y,θ)

∂jp(y,θ)
∂θj dydθ, r ×m.

(64)

Let us note that the first term on right hand side of (63) is equal toBABm,0, which is the Bayesian Bhattacharyya

bound of orderm, and thatBAB0,r (h) is the Reuven-Messer bound of orderr. We have previously shown that

problem (8) leads to the MMSEE (the best Bayesian bound). Here, from the increase of constraints, it follows

that the Bayesian Abel bound is (forr andm fixed) a better approximation of the best Bayesian bound than the

Bayesian Bhattacharyya bound of orderm and the Reuven-Messer bound of orderr.

The Bayesian Abel bound as the Reuven-Messer bound depends onr free parametersh1, ..., hr. Then, a

maximization over these parameters is desired to obtain the highest bound. Therefore, the best Bayesian Abel

bound is given by

BABm,r = sup
hr

(
αT B−1α + uT J−1u

)
. (65)

This multidimensional optimization brings with it a huge computational cost. A possible alternative is given

by noting that the Bayesian Cramér-Rao bound is a particular case of the Bayesian Bhattacharyya bound (single

derivative) and that the Bobrovsky-Zakaï bound is a particular case of the Reuven-Messer bound (single test point).

Therefore, finding a tractable form of the Bayesian Abel bound in the case wherem = 1 and r = 1 could be

interesting, since the obtained bound will be tighter than both the Bayesian Cramér-Rao bound and the Bobrovsky-

Zakaï bound with a low computational cost. In this case, Equation (65) becomes straightforwardly

BAB1,1 = sup
h

BCRB−1 + BZB−1 (h)− 2φ (h)
BCRB−1BZB−1 (h)− φ2 (h)

, (66)

whereBCRB is the Bayesian Cramér-Rao bound,BZB is the Bobrovsky-Zakaï bound, and

φ (h) =
1
h

∫

Θ

∫

Ω

∂ ln p (y, θ)
∂θ

p (y, θ + h) dydθ. (67)

Equation (66) is interesting, since if the Bayesian Cramér-Rao bound and the Bobrovsky-Zakaï bound are available

for a given problem, the evaluation of theBAB1,1 requires only the computation ofφ (h).

V. BAYESIAN BOUNDS FORSIGNAL PROCESSING PROBLEMS

In this section, we illustrate our previous analysis through a spectral analysis problem. First, we propose several

closed-form expressions for the different bounds of the Weiss-Weinstein family (including the proposed Bayesian

Abel bound) for a general Gaussian observation model with parameterized mean widely used in the signal processing
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literature (see, e.g., [68] page 35). Then, we apply these results to the spectral analysis problem. Finally, we give

simulation results that compare the different bounds and show the superiority of the Weiss-Weinstein bound.

A. Gaussian observation model with parameterized mean

We consider the following general observation model:

y = m (θ) + n, (68)

wherey is the complex observation vector(N × 1), θ is a real unknown parameter,m is a complex deterministic

vector (N × 1) depending (non-linearly) onθ, and n is the complex vector(N × 1) of the noise. The noise is

assumed to be circular, Gaussian, with zero mean and with covariance matrixσ2IN . The parameter of interestθ is

assumed to have a Gaussiana priori probability density function with meanµ and varianceσ2
θ:

p (θ) =
1√

2πσθ

e
− 1

2σ2
θ

(θ−µ)2

(69)

For this model, the likelihood of the observations is given by

p (y| θ) =
1

(πσ2)N
e−

1
σ2 (y−m(θ))H(y−m(θ)). (70)

To the best of our knowledge, only the Cramér-Rao bound expression is known in this case (see [68]).

The Bayesian Bhattacharyya bound requires the calculation of several derivatives of the joint probability function

in order to be significantly tighter than the Cramér-Rao bound, which is generally difficult (see [69], Chapter 4, for

an example for which the Bhattacharyya bound of order 2 requires much algebraic effort to finally be equal to the

Cramér-Rao bound). Consequently, we will not use this bound here.

The details are given in Appendix D.

1) Bayesian Cramér-Rao bound:

BCRB =
σ2

θ

2σ2
θ

σ2 Eθ

[∥∥∥∂m(θ)
∂θ

∥∥∥
2
]

+ 1
. (71)

2) Bobrovsky-Zakaï bound:

BZB = sup
h

h2

∫
Θ

p2(θ+h)
p(θ) e

2
σ2 ‖m(θ+h)−m(θ)‖2dθ − 1

. (72)

3) Bayesian Abel bound:BAB1,1 is given by (66):

BAB1,1 = sup
h

BCRB−1 + BZB−1 (h)− 2φ (h)
BCRB−1BZB−1 (h)− φ2 (h)

, (73)

where 



BCRB = σ2
θ

2σ2
θ

σ2 Eθ

[‖ ∂m(θ)
∂θ ‖2]

+1
,

BZB (h) = h2

∫
Θ

p2(θ+h)
p(θ) e

2
σ2 ‖m(θ+h)−m(θ)‖2

dθ−1
,

(74)

and

φ (h) =
1
σ2

θ

+
2

hσ2
Eθ+h

[
Re

{
∂mH (θ)

∂θ
(m (θ + h)−m (θ))

}]
. (75)

May 9, 2008 DRAFT



16

4) Weiss-Weinstein bound:We now consider the Weiss-Weinstein bound with one test point, which can be

simplified as follows (see [42], Equation (6)):

WWB = sup
h,s

h2e2η(s,h)

eη(2s,h) + eη(2−2s,−h) − 2eη(s,2h)
, (76)

where the key point to evaluate this bound isη (α, β), which is the semi-invariant moment generating function [70],

defined as follows:

η (α, β) = ln
∫

Θ

∫

Ω

pα (y,θ + β)
pα−1 (y,θ)

dydθ. (77)

This function is given by

η (α, β) = ln
1√

2πσθ

∫

Θ

e
α(α−1)

σ2 ‖m(θ+β)−m(θ)‖2− 1
2σ2

θ

(
θ−

(√
α(α−1)−α

)
h−µ

)(
θ+

(√
α(α−1)+α

)
h−µ

)

dθ. (78)

B. Spectral Analysis Problem

We now consider the following observation model involved in spectral analysis:

yk = aej2πkθ + nk, k = 0, . . . , N − 1, (79)

whereyk is thekth complex observation. The observations are assumed to be independent.a is the amplitude of the

single cisoïde of frequencyθ. {nk} is a sequence of random variables assumed complex, circular, i.i.d, Gaussian,

with zero mean and varianceσ2. Consequently the SNR is given bySNR = a2

σ2 . The parameter of interest is the

frequencyθ ∈ Θ =
(− 1

2 , 1
2

]
which is a Gaussian random variable with meanµ and varianceσ2

θ (69).

This model is a particular case of the model (68), where

m (θ) = as (θ) , (80)

with

s (θ)=
[

1 ej2πθ · · · ej2π(N−1)θ
]T

. (81)

Let y =
[

y0 · · · yN−1

]T

. The likelihood of the observation is given by

p (y|θ) =
N−1∏

k=0

p (yk|θ) =
1

(πσ2)N
e
− 1

σ2

(
‖y‖2−2a Re

{
N−1∑
k=0

y∗kej2πkθ

}
+Na2

)

. (82)

Note that, if θ is assumed to be deterministic and in a digital communications context, some closed-form

expressions of deterministic bounds can be found in [56].

The details of the calculus for the Weiss-Weinstein family are given in Appendix E.

1) Cramér-Rao bound:

BCRB =
σ2

θ

SNR
4π2σ2

θ

3 N(2N − 1)(N − 1) + 1
. (83)

2) Bobrovsky-Zakaï bound:

BZB = sup
h

h2

e
4SNR(N−sin2(πhN)− 1

2
sin(2πhN)
tan(πh) )+ h2

σ2
θ − 1

(84)
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3) Bayesian Abel bound:The BAB1,1 is given by (66)

BAB1,1 = sup
h

BCRB−1 + BZB−1 (h)− 2φ (h)
BCRB−1BZB−1 (h)− φ2 (h)

, (85)

where 



BCRB = 1
SNR

σ2
θ

4π2σ2
θ

3 N(2N−1)(N−1)+1
,

BZB (h) = h2

e
4SNR(N−sin2(πhN)− 1

2
sin(2πhN)
tan(πh) )+ h2

σ2
θ −1

,
(86)

and,

φ (h) =
1
σ2

θ

+
2πSNR

h

(
N

cos (2πhN)
tan (πh)

− sin (2πhN)
(

1
2 sin (πh)

+ N

))
. (87)

4) Weiss-Weinstein bound:The Weiss-Weinstein bound is given by

WWB = sup
h,s

h2e2η(s,h)

eη(2s,h) + eη(2−2s,−h) − 2eη(s,2h)
, (88)

whereη (α, β) is given by

η (α, β) = α (α− 1)
(

2SNR

(
N − sin2 (πβN)− 1

2
sin (2πβN)
tan (πβ)

)
− β2

2σ2
θ

)
. (89)

The Weiss-Weinstein bound needs to be optimized over two continuous parameters, which creates significant

computational cost. Here, two methods for reducing the computational cost are presented.

• As previously stated,h is chosen on the parameter support which is approximated by[−3σθ, 3σθ]. This support

can be reduced to[0, 3σθ], since the function is even with respect toh. Note that this remark holds for the

Bayesian Abel bound and the Bobrovsky-Zakaï bound.

• As proposed by Weiss and Weinstein in [42], it is sometimes a good choice to sets = 1/2. This approximation

is intuitively justified by the fact that the Weiss-Weinstein bound tends to the Bobrovsky-Zakaï bound when

s tends to zero or one. Unfortunately, no sound proof that this result is true in general is available in the

literature. If we sets = 1/2, η (α, β) is modified as follows:




η
(

1
2 , h

)
= − 1

4

(
2SNR

(
N − sin2 (πhN)− 1

2
sin(2πhN)
tan(πh)

)
− h2

2σ2
θ

)
,

η (1, h) = 0,

η (1,−h) = 0,

η
(

1
2 , 2h

)
= − 1

2

(
SNR

(
N − sin2 (2πhN)− 1

2
sin(4πhN)
tan(2πh)

)
− h2

σ2
θ

)
,

(90)

and the modified Weiss-Weinstein bound becomes

WWB = sup
h

h2

2
e
− 1

2

(
2SNR(N−sin2(πhN)− 1

2
sin(2πhN)
tan(πh) )− h2

2σ2
θ

)

1− e
− 1

2

(
SNR(N−sin2(2πhN)− 1

2
sin(4πhN)
tan(2πh) )− h2

σ2
θ

) . (91)

The resulting bound has approximatively the same computational cost as the BZB and the BAB.
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C. Simulations

In order to illustrate our results on the different bounds, we present here a simulation result for the spectral

analysis problem.

We consider a scenario withN = 15 observations and, without loss of generality,a = 1. The estimator will be

the Maximum Likelihood Estimator (MLE) given for this model by

θ̂ML = arg min
θ

[
‖y‖2 + Na2 − 2aRe

{
N−1∑

k=0

y∗kej2πkθ

}]
. (92)

We also use the Maximum A Posteriori (MAP) estimator given by

θ̂MAP = arg min
θ

[
1
σ2

(
‖y‖2 + Na2 − 2aRe

{
N−1∑

k=0

y∗kej2πkθ

})
+

θ2

2σ2
θ

]
. (93)

The global MSE will be computed by using the relation (3) and 1000 Monte-Carlo runs. For thea priori

probability density function of the parameter of interest, we chooseµ = 0 andσ2
θ = 1

36 rad2.

Figure (1) superimposes the global MSE of the MLE and of the MAP estimator, the Cramér-Rao bound, the

Bobrovsky-Zakaï bound, the Bayesian Abel bound, and the Weiss-Weinstein bound with optimization overs and

s = 1/2.
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Fig. 1. Comparison of the global MSE of the MLE and of the MAP estimator, the Cramér-Rao bound, the Bobrovsky-Zakaï bound, the

Bayesian Abel bound, and the Weiss-Weinstein bound with optimization overs ands = 1/2. N = 15 observations.σ2
θ = 1

36
rad2.

This figure shows the threshold behavior of both estimators when the SNR decreases. In contrast to the Cramér-

Rao bound, the Bobrovsky-Zakaï bound, the Bayesian Abel bound, and the Weiss-Weinstein bound exhibit the
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threshold phenomena. The Bayesian Abel bound is slightly higher than the Bobrovsky-Zakaï bound and, conse-

quently, leads to a better prediction of the threshold effect with the same computational cost. The Weiss-Weinstein

bounds obtained by numerical evaluation of Equations (88) and (91) are the same; therefore, s=1/2 seems to be the

optimum value in this problem. As expected by the addition of constraints, the Weiss-Weinstein bounds provide

a better prediction of the global MSE of the estimators in comparison with the Bobrovsky-Zakaï bound and the

Bayesian Abel bound. The Weiss-Weinstein bound threshold value provides a better approximation of the effective

SNR at which the estimators experience the threshold behavior.

VI. CONCLUSION

In this paper, we proposed a framework to study the Bayesian minimal bounds on the mean square error of

the Weiss-Weinstein family. This framework is based on both the best Bayesian bound (MMSE) and a constrained

optimization problem. By rewriting the problem of the MMSEE as a continuous constrained optimization problem

and by relaxing these constraints, we reobtain the lower bounds of the Weiss-Weinstein family. Moreover, this

framework allows us to propose new minimal bounds. In this way we propose an extension of the Bayesian

Bhattacharyya bound and a Bayesian version of the Abel bound. Additionally, we give some closed-form expressions

of several minimal bounds for both a general Gaussian observation model with parameterized mean and a spectral

analysis model.

VII. A PPENDIX

A. Proof of Theorem 1

This proof is based on the three following lemmas.

Lemma 1:

C1 = C2 (94)

Lemma 2:

C1 = C3 (95)

Lemma 3:

C1 = C4 (96)

Proof of Lemma 1:

• C2 ⊂ C1 : we assume that∀f (y, θ) ∈ F ,
∫
Θ

∫
Ω

v (y, θ) ∂f(y,θ)
∂θ dydθ=

∫
Θ

∫
Ω

f (y, θ) dydθ. Since,

∂ [v (y, θ) f (y, θ)]
∂θ

= v (y, θ)
∂f (y, θ)

∂θ
+

∂v (y, θ)
∂θ

f (y, θ) , (97)

we have ∫

Θ

∫

Ω

∂ [v (y, θ) f (y, θ)]
∂θ

− ∂v (y, θ)
∂θ

f (y, θ) dydθ=
∫

Θ

∫

Ω

f (y, θ) dydθ (98)
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=⇒
∫

Θ

∫

Ω

(
1 +

∂v (y, θ)
∂θ

)
f (y, θ) dydθ = 0. (99)

Since the expression (99) holds for anyf (y, θ), if we choosef (y, θ) = 1 + ∂v(y,θ)
∂θ , we obtain

∫

Θ

∫

Ω

(
1 +

∂v (y, θ)
∂θ

)2

dydθ = 0 =⇒ 1 +
∂v (y, θ)

∂θ
= 0 =⇒ v (y, θ) = z (y)− θ, (100)

wherez (y) is a function ofy only.

• C1 ⊂ C2 : on the other hand, if we assume thatv (y, θ) = z (y)− θ, then
∫

Θ

∫

Ω

v (y, θ)
∂f (y, θ)

∂θ
dydθ =

∫

Θ

∫

Ω

(z (y)− θ)
∂f (y, θ)

∂θ
dydθ

=
∫

Θ

∫

Ω

∂ [(z (y)− θ) f (y, θ)]
∂θ

+ f (y, θ) dydθ

=
∫

Θ

∫

Ω

f (y, θ) dydθ ∀f (y, θ) ∈ F (101)

These two items prove Lemma 1.¥

Proof of Lemma 2:

• C3 ⊂ C1 : we assume that∀f (y, θ) ∈ F such that
∫
Θ

∫
Ω

f (y, θ) dydθ = 1 and∀h such thatθ + h ∈ Θ,

∫

Θ

∫

Ω

v (y, θ) (f (y, θ + h)− f (y, θ)) dydθ=h. (102)

Then, whenh → 0, we have
∫

Θ

∫

Ω

v (y, θ)
∂f (y, θ)

∂θ
dydθ=1 =⇒ v (y, θ) = z (y)− θ, (103)

thanks to the result of the first item of Lemma 1.

• C1 ⊂ C3 : on the other hand, if we assumev (y, θ) = z (y)− θ, then by settingϕ = θ + h
∫

Θ

∫

Ω

v (y, θ) f (y, θ + h) dydθ =
∫

Θ

∫

Ω

(z (y)− θ) f (y, θ + h) dydθ

=
∫

Θ

∫

Ω

(z (y)− ϕ + h) f (y, ϕ) dydϕ

=
∫

Θ

∫

Ω

(z (y)− ϕ) f (y, ϕ) dydϕ + h, (104)

leading to ∫

Θ

∫

Ω

(z (y)− θ) (f (y, θ + h)− f (y, θ)) dydθ=h, (105)

∀f (y, θ) ∈ F such that
∫
Θ

∫
Ω

f (y, θ) dydθ = 1 and∀h such thatθ + h ∈ Θ.

These two items prove Lemma 2.¥
Proof of Lemma 3:
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• C4 ⊂ C1 : let L (y, η, θ) = f(y,η)
f(y,θ) and assume that∀f (y, θ) ∈ F such that

∫
Θ

∫
Ω

f (y, θ) dydθ = 1,∀h such

that θ ± h ∈ Θ and∀s ∈ [0, 1] ,
∫

Θ

∫

Ω

v (y, θ)
[
Ls (y, θ + h, θ)− L1−s (y, θ − h, θ)

]
f (y, θ) dydθ = h

∫

Θ

∫

Ω

L1−s (y, θ − h, θ) f (y, θ) dydθ,

(106)

Then, whens → 1, we obtain
∫

Θ

∫

Ω

v (y, θ) (f (y, θ + h)− f (y, θ)) dydθ=h =⇒ v (y, θ) = z (y)− θ, (107)

thanks to the result of the first item of Lemma 2.

• C1 ⊂ C4 : on the other hand, if we assumev (y, θ) = z (y)− θ, then by lettingϕ = θ + h
∫

Θ

∫

Ω

v (y, θ)Ls (y, θ + h, θ) f (y, θ) dθdy =
∫

Θ

∫

Ω

(z (y)− θ)Ls (y, θ + h, θ) f (y, θ) dθdy

=
∫

Θ

∫

Ω

(z (y)− ϕ) L1−s (y, ϕ− h, ϕ) f (y, ϕ) dϕdy

+h

∫

Θ

∫

Ω

L1−s (y, ϕ− h, ϕ) f (y, ϕ) dϕdy, (108)

leading to
∫

Θ

∫

Ω

v (y, θ)
[
Ls (y, θ + h, θ)− L1−s (y, θ − h, θ)

]
f (y, θ) dθdy = h

∫

Θ

∫

Ω

L1−s (y, θ − h, θ) f (y, θ) dθdy,

(109)

∀f (y, θ) ∈ F such that
∫
Θ

∫
Ω

f (y, θ) dydθ = 1, ∀h such thatθ ± h ∈ Θ and∀s ∈ [0, 1] .

These two items prove Lemma 3.¥
Lemmas 1, 2, and 3 prove Theorem 1.¥

B. Proof of Theorem 2

Let U be a vector space of any dimension on the field of real numbersR, with an inner product denoted by

〈u,w〉, whereu andw are two vectors ofU . Let {g1, . . . ,gK} be a family ofK independent vectors ofU and

c =
[

c1 · · · cK

]T

be a vector ofRK . We are interested in the solution of the minimization of〈u,u〉 subject

to the followingK linear constraints〈u,gk〉 = ck, k ∈ [1, K].

Let G be the vectorial sub-space of dimensionK generated by the elements{g1, . . . ,gK}. Then, ∀u ∈ U ,

u = uG +du, whereuG is the orthogonal projection ofu on G, i.e. the vectoruG ∈ G such that〈u− uG ,gk〉 = 0,

k ∈ [1,K] (see Figure (2) for a graphical representation).

Let α =
[

α1 · · · αK

]T

be the coordinates ofuG in the basis{g1, . . . ,gK} of G (i.e., uG =
K∑

k=1

αkgk).

These coordinates satisfy:〈u,gk〉 = 〈uG ,gk〉, k ∈ [1,K]. Moreover, ifu satisfies theK constraints〈u,gk〉 = ck,
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Fig. 2. Graphical representation of the problem

k ∈ [1,K], then

〈u,gk〉 = ck

⇒ 〈uG ,gk〉 = ck

⇒
〈

K∑

l=1

αlgl,gk

〉
= ck

⇒
K∑

l=1

αl 〈gl,gk〉 = ck, (110)

i.e., by a matricial rewritingGα = c, whereG is the Gram matrix associated to the family{g1, . . . ,gK}: Gk,l =

〈gl,gk〉. The equationGα = c has for unique solutionα = G−1c. Let uG,c be the vector ofG corresponding to

this solution. Then,∀u ∈ U and for satisfying theK aforementioned constraints we have〈u,u〉 = 〈uG,c,uG,c〉+

〈du, du〉 ≥ 〈uG,c,uG,c〉, and the minimum is achieved fordu = 0, which means thatuG,c is the solution of the

problem. The value of the minimal norm is given by

〈uG,c,uG,c〉 =

〈
K∑

k=1

αkgk,

K∑

l=1

αlgl

〉

=
K∑

k=1

K∑

l=1

αkαl 〈gk,gl〉

= αT Gα

=
(
G−1c

)T
GG−1c

= cT G−1c. (111)

¥

C. Derivation of the Bayesian Abel bound

We have to calculate the quadratic formcT G−1c (29). Since
∫

Θ

∫

Ω

p (x, θ + hi) dθdx = 1 ∀hi ∈ R, (112)
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and, due to (9), ∫

Θ

∫

Ω

∂ip (x, θ)
∂θi

dθdx =0 ∀i ≥ 1, (113)

the matrixG =
∫
Θ

∫
Ω

ggT dθdx can now be written as the following partitioned matrix:

G =




1 01×m 01×r

0m×1 B ΓT

0r×1 Γ D


 , (114)

where the elements{B}i,j and{D}i,j of the matricesB (m×m) andD (r × r) are given by relation (37) and

(48), respectively, and the element{Γ}i,j of the matrixΓ (r ×m) is given by

{Γ}i,j =
∫

Θ

∫

Ω

p (x, θ + hi)− p (x, θ)
p (x, θ)

∂jp (x, θ)
∂θj

dθdx,

=
∫

Θ

∫

Ω

p (x, θ + hi)
p (x, θ)

∂jp (x, θ)
∂θj

dθdx. (115)

Let G̃ =


 B ΓT

Γ D


 and c =

[
0 αT hT

]T
, where α =

[
1 0 · · · 0

]T

(size m × 1), and h =

[
h1 · · · hr

]T

. Since the first element ofc is null, only the right bottom corner̃G−1 (size(m + r)×(m + r))

of G−1 is of interest.G̃−1 is given straightforwardly by

G̃−1 =


 B ΓT

Γ D



−1

. (116)

Consequently, the Bayesian Abel bound denotedBABm,r is then given by

BABm,r =
[
αT hT

]

 B ΓT

Γ D



−1 

 α

h


 . (117)

After some algebraic effort, we obtain the final form:

BABm,r = αT B−1α + uT J−1u, (118)

with 



u = ΓB−1α− h,

J = D− ΓB−1ΓT .
(119)

¥

D. Minimal bounds derivation for the Gaussian observation model with parameterized mean

1) Bayesian Cramér-Rao bound:The Bayesian Cramér-Rao bound can be divided into two terms [20]:

BCRB =




∫

Θ

CRB−1 (θ) p (θ) dθ −
∫

Θ

∂2 ln p (θ)
∂θ2 p (θ) dθ



−1

, (120)
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whereCRB (θ) is the standard (i.e., deterministic) Cramér-Rao bound given by [68]:

CRB (θ0) =
σ2

2
∥∥∥∥ ∂m(θ)

∂θ

∣∣∣
θ0

∥∥∥∥
2 , (121)

whereθ0 is the true value of the parameter in the deterministic context.

The second term of (120) is
∫

Θ

∂2 ln p (θ)
∂θ2 p (θ) dθ = − 1

2σ2
θ

∫

Θ

∂2 (θ − µ)2

∂θ2 p (θ) dθ

= − 1
σ2

θ

∫

Θ

p (θ) dθ = − 1
σ2

θ

. (122)

Consequently,

BCRB =
σ2

θ

2σ2
θ

σ2 Eθ

[∥∥∥∂m(θ)
∂θ

∥∥∥
2
]

+ 1
. (123)

2) Bobrovsky-Zakaï bound:The Bobrovsky-Zakaï bound is given by

BZB = sup
h

h2

∫
Θ

∫
Ω

p2(y,θ+h)
p(y,θ) dydθ − 1

. (124)

The double integral in the last equation can be rewritten as follows:
∫

Θ

∫

Ω

p2 (y,θ + h)
p (y,θ)

dydθ =
∫

Θ

p2 (θ + h)
p (θ)

∫

Ω

p2 (y| θ + h)
p (y| θ) dydθ. (125)

The term p2(y|θ+h)
p(y|θ) becomes

p2 (y| θ + h)
p (y| θ) =

1

(πσ2)N
e−

1
σ2 (2(y−m(θ+h))H(y−m(θ+h))−(y−m(θ))H(y−m(θ)))

=
1

(πσ2)N
e−

1
σ2 (‖y‖2+2‖m(θ+h)‖2−‖m(θ)‖2−2 Re{yH(2m(θ+h)−m(θ))}). (126)

Let x = y − 2m (θ + h) + m (θ), and note that

‖x‖2 = ‖y‖2 + ‖2m (θ + h)−m (θ)‖2 − 2Re
{
yH (2m (θ + h)−m (θ))

}
.

Consequently,
∫

Ω

p2 (y| θ + h)
p (y| θ) dy =

1

(πσ2)N

∫

Ω

e−
1

σ2 (‖x‖2+2‖m(θ+h)‖2−‖m(θ)‖2−‖2m(θ+h)−m(θ)‖2)dx

=
1

(πσ2)N
e−

1
σ2 (2‖m(θ+h)‖2+‖m(θ)‖2−‖2m(θ+h)−m(θ)‖2)

∫

Ω

e−
1

σ2 ‖x‖2dx

︸ ︷︷ ︸
=(πσ2)N

= e
2

σ2 ‖m(θ+h)−m(θ)‖2 . (127)

The Bobrovsky-Zakaï bound is finally given by

BZB = sup
h

h2

∫
Θ

p2(θ+h)
p(θ) e

2
σ2 ‖m(θ+h)−m(θ)‖2dθ − 1

. (128)
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3) Bayesian Abel bound:We have to calculate

φ (h) =
1
h

∫

Θ

∫

Ω

∂ ln p (y, θ)
∂θ

p (y, θ + h) dydθ

=
1
h

∫

Θ

p (θ + h)
∫

Ω

(
∂ ln p (y| θ) + ln p (θ)

∂θ

)
p (y| θ + h) dydθ

=
1
h

∫

Θ

p (θ + h)
∫

Ω

∂ ln p (y| θ)
∂θ

p (y| θ + h) dydθ +
1
h

∫

Θ

∂ ln p (θ)
∂θ

p (θ + h) dθ. (129)

The first term in (129) is given by
∫

Ω

∂ ln p (y| θ)
∂θ

p (y| θ + h) dy = − 1
σ2

∫

Ω

∂ (y −m (θ))H (y −m (θ))
∂θ

p (y| θ + h) dy

=
2
σ2

∫

Ω

Re
{

∂mH (θ)
∂θ

(y −m (θ))
}

p (y| θ + h) dy

=
2
σ2

Re





∂mH (θ)
∂θ




∫

Ω

yp (y| θ + h) dy −m (θ)








=
2
σ2

Re
{

∂mH (θ)
∂θ

(m (θ + h)−m (θ))
}

. (130)

For the second term in (129), we have

1
h

∫

Θ

p (θ + h)
∂ ln p (θ)

∂θ
dθ = − 1

hσ2
θ

∫

Θ

(θ − µ) p (θ + h) dθ

=
1
σ2

θ

. (131)

Finally:

φ (h) =
1
σ2

θ

+
2

hσ2
Eθ+h

[
Re

{
∂mH (θ)

∂θ
(m (θ + h)−m (θ))

}]
. (132)

4) Weiss-Weinstein bound:We have to calculate

η (α, β) = ln
∫

Θ

∫

Ω

pα (y,θ + β)
pα−1 (y,θ)

dydθ. (133)

This function can be modified as follows

η (α, β) = ln
∫

Θ

pα (θ + β)
pα−1 (θ)

∫

Ω

pα (y| θ + β)
pα−1 (y| θ) dydθ. (134)

Let us first study the term

pα (y| θ + β)
pα−1 (y| θ) =

1

(πσ2)N
e−

1
σ2 (α(y−m(θ+β))H(y−m(θ+β))−(α−1)(y−m(θ))H(y−m(θ)))

=
1

(πσ2)N
e−

1
σ2 (‖y‖2+α‖m(θ+β)‖2−(α−1)‖m(θ)‖2−2 Re{yH(αm(θ+β)−(α−1)m(θ))}) (135)

Let x = y − (αm (θ + β)− (α− 1)m (θ)). Note that

‖x‖2 = ‖y‖2 + ‖αm (θ + β)− (α− 1)m (θ)‖2 − 2 Re
{
yH (αm (θ + β)− (α− 1)m (θ))

}
. (136)

May 9, 2008 DRAFT



26

Consequently,
∫

Ω

pα (y| θ + β)
pα−1 (y| θ) dy =

1

(πσ2)N

∫

Ω

e−
1

σ2 (‖x‖2−‖αm(θ+β)−(α−1)m(θ)‖2+α‖m(θ+β)‖2−(α−1)‖m(θ)‖2)dx

=
1

(πσ2)N
e−

1
σ2 (−‖αm(θ+β)−(α−1)m(θ)‖2+α‖m(θ+β)‖2−(α−1)‖m(θ)‖2)

∫

Ω

e−
‖x‖2

σ2 dx

︸ ︷︷ ︸
=(πσ2)N

= e
α(α−1)

σ2 ‖m(θ+β)−m(θ)‖2 . (137)

For the second term,
pα (θ + β)
pα−1 (θ)

=
1√

2πσθ

e
− 1

2σ2
θ
[α(θ+β−µ)2−(α−1)(θ−µ)2]

. (138)

Finally, the semi-invariant moment generating function is given by

η (α, β) = ln
1√

2πσθ

∫

Θ

e
α(α−1)

σ2 ‖m(θ+β)−m(θ)‖2− 1
2σ2

θ

(
θ−

(√
α(α−1)−α

)
h−µ

)(
θ+

(√
α(α−1)+α

)
h−µ

)

dθ. (139)

E. Bayesian bounds derivation for a spectral analysis problem

1) Cramér-Rao bound:The Bayesian Cramér-Rao bound is given by (123)

BCRB =
σ2

θ

2σ2
θ

σ2 Eθ

[∥∥∥∂m(θ)
∂θ

∥∥∥
2
]

+ 1
. (140)

The term
∥∥∥∂m(θ)

∂θ

∥∥∥
2

can be written

∥∥∥∥
∂m (θ)

∂θ

∥∥∥∥
2

=
∥∥∥∥a

∂s (θ)
∂θ

∥∥∥∥
2

=
N−1∑

k=0

a2
(
j2πkej2πkθ

) (−j2πke−j2πkθ
)

= a24π2
N−1∑

k=0

k2 =
2 (aπ)2

3
N(2N − 1)(N − 1), (141)

which is independent ofθ. Consequently, the Bayesian Cramér-Rao bound is

BCRB =
σ2

θ

SNR
4π2σ2

θ

3 N(2N − 1)(N − 1) + 1
. (142)

2) Bobrovsky-Zakaï bound:The Bobrovsky-Zakaï bound is given by (128)

BZB = sup
h

h2

∫
Θ

p2(θ+h)
p(θ) e

2
σ2 ‖m(θ+h)−m(θ)‖2dθ − 1

. (143)

In the case of our specific model (79), the term‖m (θ + h)−m (θ)‖2 can be written

‖m (θ + h)−m (θ)‖2 = a2
N−1∑

k=0

(
ej2πk(θ+h) − ej2πkθ

)(
e−j2πk(θ+h) − e−j2πkθ

)

= a2
N−1∑

k=0

(
2− 2Re

{
ej2πkh

})
= 2a2

N−1∑

k=0

1− cos (2πkh)

= 2a2

(
N − sin2 (πhN)− 1

2
sin (2πhN)
tan (πh)

)
, (144)
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which is independent ofθ. The term
∫
Θ

p2(θ+h)
p(θ) dθ becomes

∫

Θ

p2 (θ + h)
p (θ)

dθ =
1√

2πσθ

e
− 1

2σ2
θ
[2h2−4hµ+µ2]

∫

Θ

e
− 1

2σ2
θ
[θ2+2θ(2h−µ)]

dθ

= e
− 1

2σ2
θ
[2h2−4hµ+µ2]+ (2h−µ)2

2σ2
θ = e

h2

σ2
θ , (145)

where the term
∫
Θ

e
− 1

2σ2
θ
[θ2+2θ(2h−µ)]

dθ is given by [71] page 355, equation (BI((28))(1),

∞∫

−∞
e−p2x2±qxdx =

√
π

abs (p)
e

q2

4p2 . (146)

Finally, the Bobrovsky-Zakaï is given by

BZB = sup
h

h2

e
4SNR(N−sin2(πhN)− 1

2
sin(2πhN)
tan(πh) )+ h2

σ2
θ − 1

(147)

3) Bayesian Abel bound:We have to calculate (132)

φ (h) =
1
σ2

θ

+
2

hσ2
Eθ+h

[
Re

{
∂mH (θ)

∂θ
(m (θ + h)−m (θ))

}]
. (148)

The termRe
{

∂mH(θ)
∂θ (m (θ + h)−m (θ))

}
can be rewritten as follows:

Re
{

∂mH (θ)
∂θ

(m (θ + h)−m (θ))
}

= Re
{

a2 ∂sH (θ)
∂θ

(s (θ + h)− s (θ))
}

= a2 Re

{
N−1∑

k=0

(
ej2πk(θ+h) − ej2πkθ

) ∂e−j2πkθ

∂θ

}

= −2πa2 Re

{
N−1∑

k=0

jk
(
ej2πkh − 1

)
}

= 2πa2
N−1∑

k=0

k sin (2πkh)

= πa2

(
N

cos (2πhN)
tan (πh)

− sin (2πhN)
(

1
2 sin (πh)

+ N

))
, (149)

which is independent ofθ. Consequently,

φ (h) =
1
σ2

θ

+
2πSNR

h

(
N

cos (2πhN)
tan (πh)

− sin (2πhN)
(

1
2 sin (πh)

+ N

))
. (150)

4) Weiss-Weinstein bound:We have to calculate (139),

η (α, β) = ln
∫

Θ

pα (θ + β)
pα−1 (θ)

e
α(α−1)

σ2 ‖m(θ+β)−m(θ)‖2dθ

= ln


e2α(α−1)SNR(N−sin2(πβN)− 1

2
sin(2πβN)
tan(πβ) )

∫

Θ

pα (θ + β)
pα−1 (θ)

dθ


 , (151)

thanks to (144) and to the independence ofθ in the term‖m (θ + β)−m (θ)‖2.
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The remaining term is given by
∫

Θ

pα (θ + β)
pα−1 (θ)

dθ =
1√

2πσθ

e
− 1

2σ2
θ
[αβ2−2αβµ+µ2]

∫

Θ

e
− 1

2σ2
θ
[θ2+2θ(αβ−µ)]

dθ

= e
− 1

2σ2
θ
[αβ2−2αβµ+µ2]+ (αβ−µ)2

2σ2
θ = e

−αβ2

2σ2
θ

(1−α)
, (152)

where
∫
Θ

e
− 1

2σ2
θ
[θ2+2θ(αβ−m)]

dθ is obtained thanks to [71] page 355, Equation (BI((28))(1).

Consequently,η (α, β) is given by

η (α, β) = α (α− 1)
(

2SNR

(
N − sin2 (πβN)− 1

2
sin (2πβN)
tan (πβ)

)
− β2

2σ2
θ

)
. (153)
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