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ABSTRACT

In the context of radar detection, the clutter covariance matrix estimation is an
important point to design optimal detectors. While the Gaussian clutter case has been
extensively studied, the new advances in radar technology show that non-Gaussian
clutter models have to be considered. Among these models, the spherically invariant
random vector modelling is particularly interesting since it includes the K-distributed
clutter model, known to fit very well with experimental data. This is why recent results
in the literature focus on this distribution. More precisely, the maximum likelihood
estimator of a K-distributed clutter covariance matrix has already been derived. This
paper proposes a complete statistical performance analysis of this estimator through its
consistency and its unbiasedness at finite number of samples. Moreover, the closed-
form expression of the true Cramér-Rao bound is derived for the K-distribution
covariance matrix and the efficiency of the maximum likelihood estimator is

emphasized by simulations.

© 2009 Elsevier B.V. All rights reserved.

Notations

The notational convention adopted is as follows: italic
indicates a scalar quantity, as in A; lower case boldface
indicates a vector quantity, as in a; upper case boldface
indicates a matrix quantity, as in A. Re{A} and Zm{A}
are the real and the imaginary parts of A, respectively.
The complex conjugation, the matrix transpose operator,
and the conjugate transpose operator are indicated by *, T,
and ", respectively. The j th element of a vector a is
denoted a?. The n th row and m th column element of the
matrix A will be denoted by A, |A| and Tr(A) are the
determinant and the trace of the matrix A, respectively.
® denotes the Kronecker product. I - || denotes any matrix
norm. The operator vec(A) stacks the columns of the
matrix A one under another into a single column vector.
The operator vech(A), where A is a symmetric matrix, does
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the same things as vec(A) with the upper triangular
portion excluded. The operator veck(A) of a skew-
symmetric matrix (i.e., AT = —A) does the same thing as
vech(A) by omitting the diagonal elements. The identity
matrix, with appropriate dimensions, is denoted I and the
zero matrix is denoted 0. E[-] denotes the expectation
operator. &3 stands for the almost sure convergence and
= stands for the convergence in probability. A zero-mean
complex circular Gaussian distribution with covariance
matrix A is denoted CN(0,A). A gamma distribution with
shape parameter k and scale parameter 6 is denoted
G(k,0). A complex m-variate K-distribution with para-
meters k, 0, and covariance matrix A is denoted K, (k, 0, A).
A central chi-square distribution with k degrees of free-
dom is denoted yx2(k). A uniform distribution with
boundaries a and b is denoted U q .

1. Introduction

The Gaussian assumption makes sense in many
applications, e.g., sources localization in passive sonar,
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radar detection where thermal noise and clutter are
generally modelled as Gaussian processes. In these
contexts, Gaussian models have been thoroughly investi-
gated in the framework of statistical estimation and
detection theory (see, e.g., [1-3]). They have led to
attractive algorithms such as the stochastic maximum
likelihood method [4,5] or Bayesian estimators.

However, the assumption of Gaussian noise is not
always valid. For instance, due to the recent evolution of
radar technology, one can cite the area of space time
adaptive processing-high resolution (STAP-HR) where the
resolution is such that the central limit theorem cannot
be applied anymore since the number of backscatters is
too small. Equivalently, it is known that reflected signals
can be very impulsive when they are collected by a low
grazing angle radar [6,7]. This is why, in the last decades,
the radar community has been very interested in
problems dealing with non-Gaussian clutter modelling
(see, e.g., [8-11]).

One of the most general non-Gaussian noise model is
provided by spherically invariant random vectors (SIRV)
which are a compound processes [12-14]. More precisely,
an SIRV is the product of a Gaussian random vector (the
so-called speckle) with the square root of a non-negative
random scalar variable (the so-called texture). In other
words, a noise modelled as an SIRV is a non-homogeneous
Gaussian process with random power. Thus, these kind of
processes are fully characterized by the texture and the
unknown covariance matrix of the speckle. One of the
major challenging difficulties in SIRV modelling is to
estimate these two unknown quantities [15]. These
problems have been investigated in [16] for the texture
estimation while [17,18] have proposed different estima-
tion procedures for the covariance matrix. Moreover, the
knowledge of these estimates accuracy is essential in
radar detection since the covariance matrix and the
texture are required to design the different detection
schemes.

In this context, this paper focuses on parameters
estimation performance where the clutter is modelled
by a K-distribution. A K-distribution is an SIRV, with a
gamma distributed texture depending on two real positive
parameters o and f. Consequently, a K-distribution
depends on «, f and on the covariance matrix M. This
model choice is justified by the fact that a lot of
operational data experimentations have shown the good
agreement between real data and the K-distribution
model (see [7,19-22] and references herein).

This K-distribution model has been extensively studied
in the literature. First, concerning the parameters estima-
tion problem, [23,24] have estimated the gamma dis-
tribution parameters assuming that M is equal to the
identity matrix, [17] has proposed a recursive algorithm
for the covariance matrix M estimation assuming o and
p known and [25] has used a parameter-expanded
expectation-maximization (PX-EM) algorithm for the
covariance matrix M estimation and for a parameter v
assuming v = o = 1/f. Note also that estimation schemes
in K-distribution context can be found in [26,27] and
references herein. Second, concerning the statistical
performance of these estimators, it has been proved in

[28] that the recursive scheme proposed by [17] converges
and has a unique solution which is the maximum
likelihood (ML) estimator. Consequently, this estimator
has become very attractive. In order to evaluate the
ultimate performance in terms of mean square error, [23]
has derived the true Cramér-Rao Bound (CRB) for the
parameters of the gamma texture (namely, o and f3)
assuming M equal to the identity matrix. Gini [29] has
derived the modified CRB on the one-lag correlation
coefficient of M where the parameters of the gamma
texture are assumed to be nuisance parameters. Concern-
ing the covariance matrix M, a first approach for the true
CRB study, which is known to be tighter than the modified
one, has been proposed in [25] whatever the texture
distribution. However, note that, for the particular case of
a gamma distributed texture, the analysis of [25] involves
several numerical integrations and no useful information
concerning the structure of the Fisher information matrix
(FIM) is given. Finally, classical covariance matrix estima-
tors are compared in [30] in the more general context of
SIRV.

The knowledge of an accurate covariance matrix
estimate is of the utmost interest in context of radar
detection since this matrix is always involved in the
detector expression [30]. Therefore, the goal of this
contribution is twofold. First, the covariance matrix ML
estimate statistical analysis is provided in terms of
consistency and bias. Second, the closed-form expression
of the true CRB for the covariance matrix M is given and is
analyzed. Finally, through a discussion and simulation
results, classical estimation procedures in Gaussian and
SIRV contexts are compared.

The paper is organized as follows. Section 2 presents
the problem formulation while Sections 3 and 4 contain
the main results of this paper: the ML estimate statistical
performance in terms of consistency and bias and the
derivation of the true CRB. Finally, Section 5 gives
simulations which validate theoretical results.

2. Problem formulation

In radar detection, the basic problem consists in
detecting if a known signal corrupted by an additive
clutter is present or not. In order to estimate the clutter
parameters before detection, it is generally assumed that
K signal-free independent measurements, traditionally
called the secondary data ¢, k=1,...,K are available.

As stated in the introduction, one considers a clutter
modelled thanks to a K-distribution denoted

e~ Km(@, 2/, M). M
From the SIRV definition, ¢, can be written as
C; = /TiX» 2

where 1), is gamma distributed with parameters o and
(2/P)7, ie., 1,~G(a, (2/p)%) and, where X, is a complex
circular zero-mean m-dimensional Gaussian vector with
covariance matrix E[x;x/"] =M independent of . For
identifiability considerations, M is normalized according
to Tr(M) =m (see [17]). Note that the parameter «
represents the spikiness of the clutter. Indeed, when o is
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high the clutter tends to be Gaussian and, when o is small,
the tail of the clutter becomes heavy.

The probability density function (PDF) of a random
variable 7, distributed according to (o, (2/)?) is given by

2\ ¢ o1 2
p(T) = (ﬁ) ?(a)exp</irk), 3)

where I'(«) is the gamma function defined by

I = /oﬂo x*~1exp(—x) dx. “)

From Eq. (2), the PDF of ¢, can be written

. e M ¢,
p(c; M, o, f) = ./0 WeXP <_Tk p(ti) dty,

)
which is equal to
'Ba+m (c?M—l ck)(ct—m)/Z

C: M, 0, f) =
P(C 2 2Fm=T o NI T (o)

Km—o: <ﬁ CZIMA ck) B

(6)
where K, () is the modified Bessel function of the second
kind of order v [31].

Gini et al. have derived the ML estimator as the
solution of the following equation [17]:

. 1& !
M = ¢ kz:; Cm(€ My Ci)CCY @

where the function cp,(q) is defined as

iKo{—m—l(ﬁﬁ)
29 Ko-m(BSD

Note that the ML estimate M, has to be normalized as
M : Tr(M,;) = m. Finally, it has been shown in [28] that
the solution to Eq. (7) exists and is unique for the
aforementioned normalization.

Cm(q) = ®)

3. Statistical analysis of My

This section is devoted to the statistical analysis of M,y
in terms of consistency and bias.

3.1. Consistency

An estimator M of M is said to be consistent if
MM 2o,
K—+o00

where K is the number of secondary data c;’s used to
estimate M.

Theorem 3.1 (MML consistency). M,; is a consistent
estimate of M.

Proof. In the sequel, My; will be denoted M(K) to show
explicitly the dependence between M, and the number K
of xj, s. Let us define the function fixm such that

D—1D,

K
fim: A—>% > em(cf A o], ©)
k=1

where cp(-) is defined by Eq. (8), where D={A¢c
Mn(C)|A" = A, A positive definite matrix} with Mu(C) =
{m x m matrices with elements in C}, and where C is the
set of complex scalar. As M(K) is a fixed point of function
frm, it is the unique zero, which respects the constraint
Tr(M(K)) = m, of the following function:

) D—D,
8K ) A—gk(A) = A — fim(A).

To prove the consistency of M(K), Theorem 5.9 of
[32, p. 46] will be used. First, the strong law of large
numbers (SLLN) gives

VAeD, g(A) > gA),

where
YAeD, gA) =A-—Ecn(c’Ac)ec] (10)

for c~Km(at, (2/5)*, M).
Let us now apply the change of variable y = A~"/?c. We
obtain

Y~Km(o, 2/B)*, A >MA'/?)
and
VAeD, gA)=A"*1-Ecnyyyy'DA?

and
12 1E H H\al/2
VAeD, gx(A)=A""|1- sz:; (Y Y¥iYi |A7°.

Let us verify the hypothesis of Theorem 5.9 of
[32, p. 46]. We have to prove that for every ¢>0,

(Hy) : sup{lgc(A) —g@®)} = 0,
AeD —too

(Hy): A:“Ai{lng“zc{l‘g(t‘\)l‘} >0=gM.

For every A € D, we have

gk (A) — g(A)Il = A

Since E[cn(y"y)yy"]< + oo, one can apply the SLLN to
the K ii.d. variables cn(yly,)y,y!!, with same first order
moment. This ensures (Hy).

Moreover, the function c,,(cFA™'¢) is strictly decreasing
w.r.t. A. Consequently, E[cn(c?A"¢c)ecl] too. This implies
that E[c,n(cPA ! c)ccH] A, except for A = M. This ensures
(Hy).

Finally, Theorem 5.9 of [32, p. 46] concludes the proof

-

and My M O
K—+o00

1 K
¢ 2_EnW{YOYYY — Elcmy™y)¥Y")
k=1

3.2. Bias

This subsection provides an analysis of the bias B
defined by B(My;) = E[Mpy; ] — M.

Theorem 3.2 (Unbiasedness of My ). My is an unbiased
estimate of M at finite distance (i.e., at finite number K).
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Proof. For the sake of simplicity, My; will be denoted M
in this part. By applying the following change of variable,
Vi, = M~2¢,, to Eq. (7), one has

. 1K o
M= 2 cnET YoM PyyiMe,
k=1

where
T=M"12NM1/2.

Therefore,

K
T= ,l(; VT yOyYy-
=
T is thus the unique estimate (see [28, Theorem IIL.1]) of
the identity matrix, with Tr(T) = m. Its statistic is clearly
independent of M since the y,’s are i.i.d. SIRVs with a
gamma distributed texture and identity matrix for the
Gaussian  covariance matrix. In other words,
Vi~ Km(@, 2/B7.D.
Moreover, for any unitary matrix U,

. 1K Y
UTU! = EZcm(zkH(UTUH) 1zoz2d,
k=1

where z,=Uy, are also iid. and distributed as
Km(o,(2/)?,1) and UTU" has the same distribution as T.
Consequently,

E[T] = UE[TJU" for any unitary matrix U.

Since E[T] is different from 0, Lemma A.1 of [30] ensures
that E[T] =7l for y € R. Remind that T = M~'/2MM~1/2,
then E[M] = yM. Moreover, since Tr(M) = Tr(M) = m, one
has

m = E(Tr(M)) = Tr(E(M)) = yTr(M) = ym, (1)

which implies that y = 1.
In conclusion, M is an unbiased estimate of M, for any
number K of secondary data. O

3.3. Comments

Theorems 3.1 and 3.2 show the attractiveness of the
estimator (7) in terms of statistical properties, i.e.,
consistency and unbiasedness. Note also that this estima-
tor is robust since the unbiasedness property is at finite
number of samples. In the next section, the Cramér-Rao
bound is derived for the observation model (2).

4. Cramér-Rao bound

In this Section, the Cramér-Rao bound w.rt. M is
derived. The CRB gives the best variance that an unbiased
estimator can achieve. The proposed bound will be
compared to the mean square error of the previously
studied ML estimator (Eq. (7)) in the next section.

The CRB for a parameter vector 0 is given by

62111;7@1,...,cI<;0)D‘1
CRB, = (—E|Z0PCL- GO 12
o ( { 00007 (12

where p(ci,...,cx;0) is the likelihood function of the
observations ¢, k=1,...,K. Concerning our model, the
parameter vector is

0 = (vech” (Re{M}) veck" Zm{M}))", m? x 1. (13)

With the parametrization of Eq. (13), the structure of
CRB becomes

Fii Fi2\ '
CRB@:(Fz‘] F2,2> N (14)

where the F;;'s are the elements of the FIM given by

Fii—_ &Inp(cy, ..., cx;0)
’ ovech(Re{M})ovech’ (Re(M})|’
mm+1) mm+1)
3 X 5 s (15)
2] K
Fi,=F, = _E{ Finpe, )cf’a) ],
ovech(Re{M})oveck’ (Zm{M})
mm+1) mm-1)
5 X 5 R (16)
_ &%Inp(cy,...,ck; 0)
Fro=-E T ,
oveck(Zm{M})oveck' (Zm{M})
m(m—l)Xm(m—l). a7

2 2

Since the ¢;’s are i.i.d. random vectors, one have from
Eq. (6),

K ﬁa+m(cij—1ck)(m—m)/2

Cy,...,Cx;0) =
p(cy K; 0) l(l;[l 27T MIT ()

Kn_o(Br\/ M " cy).

(18)
Consequently, the log-likelihood function can be written as

[gDH»m

Inp(cq,...,cxl0) =KIn| ——————
p(cy K 16) (2“*’"’171'“1“(0()

) — KIn(M))

K
+Z 1n((c’,jM*1 ck)(xim)/sz—x(ﬂ C?Mi] Ci)).
k=1

(19)
4.1. Result

The next subsections will show that the CRB w.r.t. 6, in
this context, is given by

CRB, — | (HTFH)! 0 20
"= K 0 K'FK)~' )’ 20

where the matrices H and K are constant transformation
matrices filled with ones and zeros such that vec(A) =
Hvech(A) and vec(A) = Kveck(A), with A a skew-sym-
metric matrix, and where

2(+1) @, m))

m+1 8
x(MT @ M)~ 12(1 + vec(vec" I)(M” @ M)~1/2, (21)

F=(MT®M)’1—<

where ¢(«, m) is given by Eq. (F.3).

Remarks.

e (o, m) is a constant which does not depend on f since
B*1i~G(ar, 4) (see Eq. (E.3)).
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e The first term of the right hand side of Eq. (21) is the
Gaussian FIM (i.e., when 1, =1 Vk). Indeed, using
Egs. (24), (49) and (30),! the Gaussian CRB, denoted
GCRBgy, is straightforwardly obtained as

1 /HM M) H! 0
GCRBy = & < 0 KM @ M)'K)!

(22)
By identification with Eq. (21), it means that

. 2+ 1) y\ _
JLITolo<m+l 7§)_0'

Consequently, due to the structure of I+ vec(vec’(I),
the FIM for K-distributed observations is given by the
Gaussian FIM minus a sparse matrix depending on o, M
and m.

4.2. Outline of the proof

To make the reading easier, only the outline of the CRB
derivation is given below. All the details are reported into
the different appendices.

4.2.1. Analysis of Fy 1
With Eq. (19) one has
&Inp(cy,...,cx; 0)
avech(Re{M})6vechT(Re{M})
a*In(M))
avech(Re{M})ovech! (Re{M})

K In((ef/M )™/ 2K _o(B/ciM !
N n(cf/M~"¢y) T(ﬁ c ck)) 23)
= ovech(Re{M})ovech' (Re{M})

The first part of the right hand side of Eq. (23) is given
by
&%In(|M|)
ovech(Re{M})ovech! (Re{M})
=KH' M @ M)"'H (24)

thanks to Appendix A, Eq. (A.3), and thanks to the fact that

aveck’ @m{M}))

ovech(Re{M}) — 25
and

avech” (Re{M}) _

ovech(Re{M}) — (26)

Through the remain of the paper, let us set z=
BciM e, and  f(2) = In(z/p)* ™/ *Kn_s(v/2). The
second term (inside the sum) of the right-hand side of

! With % = 1,z = /M~ ¢, which is the term to be derived w.r.t. 0 in
the exponential term of the multivariate Gaussian distribution.

Eq. (23) is given by

P In((c/M " ¢)) ™/ 2K, g(ﬁ,/c,ﬁ’M—lck))
avech(R]{M})avech” (R1{M
_ #*f@)
"~ ovech(Re{M})ovech! (Re{M
Note that

*f(2) = <6J;(ZZ) az) 0z = 62{ (ZZ) 020z + @ (28)

27)

with (details are given in Appendix B)
= —p*avech"(RIMPHT(M" @ M)~ vec(c,cl)
+ip*oveck’ (ZHMPK' MT © M)~! vec(cicl) (29)
and
o*z = 2%ovech’ (RefMHH (M TcicfM™T)
® M~")Hovech(Re{M})
+2p2aveck” @mMHK (M TcicfM™T)
® M™HKoveck@m{My}) (30)
and (details are given in Appendix C)

@ _ 1 Kno1(vV2)

WD ="5" = "2V% Kns(vz

=) G

and

0 f(Z)

dy(2) =

_ 1 Km—oz+l(ﬁ) Km—ot—l(ﬁ)
_4_z<]+ Kn—o(/Z )<72_ K2 )>> G2

Consequently, the structure of Eq. (28) becomes
3f(z) = 2p%d1(2)ovech” (Re{M})H" P;Hovech(Re{M})
+ 2%d;(2)veck @m{M})K' P, Koveck(ZTm{M})
+ BAdy(z)ovech” (Re{M})H! P,Hovech(Re{M})
+ BAdy(z)oveck! (Zm{M)K'P,Koveck(Zm{M}),

(33)
where
Pi=MT ciciM oM, 34
P, = M @ M)~ vec(c el yvec (e ch(MT @ M)~ (35)
Therefore, Eq. (27) is given by
?f@)
avech(Re{M})ovech! (Re{M})
= 2/°d1(2H'P1H + f*d2(2)H'P,H (36)
due to Egs. (25) and (26).
Using Eqgs. (23), (24), and (36), F;; is given by
Fi1 = —KH'(M" @ M)~ + 257E[d; 2)P1]
+ (*Eld22)P2)H, 37)

where d;(z) and d,(z) are defined by Egs. (31) and (32),
respectively.
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The two expectation operators involved in the previous
equation can be detailed as follows:

Edi@P1] = —sM'TM ) g M™! (38)
and

Edy(2)Py] = M @ M) {(W +E- )M @ M), (39)
where

-i Km—a-ﬂ (ﬁ)c*cT}
IVZ Kn_a(v2) **]°
;vec(ckcf)vec”(ckck” }
_i Km—a+1 (ﬁ)
1232 Kin—a(V2)
-l Km—oc—l (\/z)Km—ocH (\/2)

I'=E

-~
Il
T

[
Il
52!

vec(ccvect (¢! )} ,

Y=FE B & (/) vec(ccihvect (¢ cth.
(40)
After some calculus detailed in Appendix D, one finds
r= %MT. 41)
Concerning ¥, one has
HyvecH(c,cH
- le vec(c,cy )vic (crey) , 42)
B c'M™ ¢

where the expectation is taken under a complex
K-distribution K (o, (2/)%, M).
Concerning E, one has

_ 1
@1

where the expectation is taken under a complex
K-distribution Kn(a — 1,(2/B)%. M).
Concerning Y, one has

Y = lE Km—zx—l (\/Z)Km—aHl («/2) VEC(CkCZI)VECH(CkCIIj)
lid K% _,(v2) ciM ¢, ’

1]

(43)

vec(c,cliyvect (c,clh)
-1
cM ¢,

(44)

where the expectation is taken under a complex
K-distribution Km(a, (2/5)%, M).

The closed-form expression of E[vec(c,civecH(c,cf)/
ch‘lck] under a complex K-distribution is given in
Appendix E. One finds

8 «o

Fm M2 @ M"?)(I + vec(vec! () (M"/? @ M'/?)

(45)

and

=
- =

%mLH(MT/2 ® M'2)A + vec(lvec! I))(M'? @ M'/?).

(46)

The structure of Y is analyzed in Appendix F.
Consequently, Eq. (37) is reduced to

2+ 1) (p(oc,m)>

_ T T -1 _
Fi, = KH ((M ® M) <m+1 -

™" ® M)~2(1 + vecvec" )M’ ® M)—wz)H,
47)
where ¢(x, m) is given by Eq. (E.3).

4.2.2. Analysis of F 2
The analysis of F,; is similar to the one used for F; ;.
Indeed, one has to calculate
&Inp(cy,...,cx; 0)
oveck(Z m{M})aveckT(Z m{M})
&2In(IM))
aveck(Zm{M})oveck! (Zm{M})

-

PIn((ef M )" ™ Kn_o(/ M ))

T (48)
= oveck(Zm{My})oveck (Zm{M})
Using Eq. (A.3), one has
_ &In(M))
aveck(Zm{M})oveck (Zm{M})
= KK'M" @ M)"'K (49)
due to Eq. (25) and due to
oveck(Zm{M}) 1 (50)

aveck' zm(M))
By using the same notation as for the derivation of Fy ;
and by using Eq. (33), one obtains for the second term on
the right hand side of Eq. (48) as
PIn((IM " )™ ™ 2K _o(Br/eiM " c)
aveck(Zm{M})oveck! (Zm{M})
=28%d1@K'P;K + B*d, (2K P,K, (51)

where Py, P,, dq(2) and d;(z) are defined by Eqgs. (34), (35),
(31), and (32), respectively. Therefore, the structure of F,
is the same as the structure of F;; except that one
replaces the matrix H by the matrix K.

4.2.3. Analysis of F15 = F} |

Due to the structure of Eq. (A.3) and Eq. (33), and since
the derivation is w.r.t. ovech(R]{M}) and aveck! (Zm{M}), it
is clear that

Fi,=F, =0 (52)

by using Eq. (25).
This concludes the proof of the CRB derivation.

5. Simulation results

In this section, some simulations are provided in order
to illustrate the proposed previous results in terms of
consistency, bias, and variance analysis (throughout the
CRB). While no mathematical proof is given in other
sections, we show the efficiency of the MLE meaning that
the CRB is achieved by the variance of the MLE.

The results presented are obtained for complex
K-distributed clutter with covariance matrix M randomly
chosen.
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All the results are presented different values of 5.1. Consistency
parameter o and f§ = 2./a following the scenario of [17].
The size of each vector ¢, is m = 3. Remember that the Fig. 1 presents results of MLE consistency for 1000
parameter o represents the spikiness of the clutter (when Monte Carlo runs per each value of K. For that purpose, a
o is high the clutter tends to be Gaussian and, when « is plot of D(M, K) = IIM — MIl versus the number K of ¢,’s is
small, the tail of the clutter becomes heavy). The norm presented for each estimate. It can be noticed that the
used for consistency and bias is the L? norm. above criterion D(M, K) tends to 0 when K tends to co for

— K-distribution with o = 0.1 |
— K-distribution with o. = 1
K-distribution with o = 10

<
S w0
[a)]
102 k L . M | . o
10° 10°
Number of secondary data
Fig. 1. D(M, K) versus the number of secondary data for different values of o.
100 T T T T T T T T
—¥— a=0.1 10000 Monte-Carlo|
—¥— =10 10000 Monte—Carlo |4
a=0.1 1000 Monte-Carlo |]
=10 1000 Monte—Carlo
107" b E
<
S 107 E
(@]

200 300 400 500 600 700 800 900
Number of secondary data

Fig. 2. C(M,K) versus the number of secondary data for different values of o.
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Fig. 3. GCRB, CRB and empirical variance of the MLE for different values of o.

each estimate. Moreover, note that the parameter « has
very few influence on the convergence speed which
highlights the robustness of the MLE.

5.2. Bias

Fig. 2 shows the bias of each estimate for the different
values of o. The number of Monte Carlo runs is given in
the legend of the figure. For that purpose, a plot of the
criterion C(M, K) = IIM — M versus the number K of ¢;’s is
presented for each estimate. M is defined as the empirical
mean of the quantities N (i) obtained from I Monte Carlo
runs. For each iteration i, a new set of K secondary data c;
is generated to compute M(). It can be noticed that,
as enlightened by the previous theoretical analysis, the
bias of M tends to 0 whatever the value of K. Furthermore,
one sees again the weak influence of the parameter o on
the unbiasedness of the MLE.

5.3. CRB and MSE

The CRB and empirical variance of the MLE for 10 000
Monte Carlo runs are plotted in Fig. 3. For comparison, we
also plot the Gaussian CRB (i.e., when 7, = 1 Vk) given by
Eq. (22). Although it is not mathematically proved in this
paper, one observes, in Fig. 3, the efficiency of the MLE
even for impulsive noise (o small).

6. Conclusion

In this paper, a statistical analysis of the maximum
likelihood estimator of the covariance matrix of a complex
multivariate K-distributed process has been proposed.
More particularly, the consistency and the unbiasedness

(at finite number of samples) have been proved. In order
to analyze the variance of the estimator, the Cramér-Rao
lower bound is derived. The Fisher information matrix in
this case is simply the Fisher information matrix of the
Gaussian case plus a term depending on the tail of the
K-distribution. Simulation results have been proposed to
illustrate these theoretical analyses. These results have
shown the efficiency of the estimator and the weak
influence of the spikiness parameter in terms of consis-
tency and bias.

Appendix A. Derivation of #*In{/M|}

To find this term and several other, we will use the
following results [33]:

JTr(X) = Tr(cX), (A.1a)
ovec(X) = vec(oX), (A.1b)
oA~ = _A15AA7T, (A1)
dlA| = |A| Tr(A16A), (A.1d)
oA B)=0A) B+A oB) where =xor® (Ale)
aln(IM|) = Tr(M~'oM), (A.11)
a@EM) = 0, (Alg)
Tr(AB) = Tr(BA) (A.1h)
MIlgM'=MeM), (A.10)
Tr(APB) = vec” (A)vec(B), (A1j)
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vec(ABC) = (CT ® A)vec(B). (A.1k)

By using these properties, one has

aln(IM)) = Tr(M~(6M)) from (A.1f)

&In(IM)) = —Tr(M~ (eM)M~'6M)
from (A.1a)(A.1e)(A.1g)(A.1¢c)
= —vec!(M~1(6M)M')vec(éM) from (A.1j)
= —vec@EM)M T @ M~ Hf'vec(dM) from (A.1k)
= —avec!(M)M" @ M)~ 'svec(M)
from (A.1b)(A.1i).
By letting M = Re{M} + iZm{M} in Eq. (A.3), one has
&?In(M|) = —ovecH (Re(M} + iZm{M})
x(MT @ M)~ 'ovec(Re{M} + iZm{M})
= —ovec(Re(MH(MT @ M)~ avec(Re{M})
—ovec(Tm{M)M" ® M)~ 'ovec(Re{M})
fﬁvec”(Re{M})(MT @ M)~! ovec(iZzm{M})
—ovecGTm{M)M" ® M)~ ovec(iZzm{M}).
(A2)
Since vecH(iTm{M}) = —ivec(Zm{M}) and vect(Re{M})
= vec'(Re{M}), &*In(]M)) is reduced to
AIn(M|) = —avec (Re{MHM' ® M)~ avec(Re{M})
— ovec!@mMpM’ @ M)~ ovec(Zm{M})
= —ovech” (Re{M)H"
x(M" ® M)~ 'Hovech(Re{M})
—oveckT(@mMpK'M” @ M)~'Koveck(Zm{M}),
(A3)

where the matrix H and K are constant transformation
matrices filled with ones and zeros such that vec(A) =
Hvech(A) and vec(A) = Kveck(A).

Appendix B. Derivation of 6z and 5z

By using the properties from Eq. (A.1a) to (A.1k), one
has for oz

oz = fPa(ciM " ¢) = foTr(c!M ¢

= B*Tr(claM~')c,) from (A.1a)

= —B*Tr(c/M oMM 'c,) from (A.1c)

= —f*Tr(@MM "¢, cfM~") from (A.1h)

= —p*vect (@MyvecM ' c,c/M~ 1)  from (A.1j)
—pPovecH (M)
x(M" ® M)~ 'vec(ccl) from (A.1b)(A.1k)(A.1i).

By letting M = Re{M} + iZm{M}, one obtains

= —pPovec (Re(MhHM” ® M)~ 'vec(c,cll)
+ip*ovec’ @mMHM’ ® M)~'vec(cicfl)

= —p*avech’ (Re(MHH' (M” ® M)~"vec(cc)
+ip*oveck’ @mMpK' M” @ M) 'vec(cicl).  (B.1)

Concerning &%z, one has

0z = —f*Tr(cfM oMM ' ¢} (B.2)

3z = —f°Tr(claM oMM ')c,) from (A.1a)
= —[3 Tr(cfo(M™ HheMM !¢,
+c'M~'oMo(M~")c,) from (A.1e)(A.1g)
= 24°Tr(GMM oMM 'c,cf/M~') from (A.1c)(A.1h)
= 2p%ovec! My(MTc;cfMT)
® M Havec(M) from (A.1j)(A.1k)(A.1b)
By letting M = Re{M} + iZm{M}, one obtains
8%z = 2p%ovech’ (Re(M)H" (M c;cIM~")M~")Hovech(Re(M})

+2p2oveck’ @mMHK (M "cicfMT)
@M~ HKaveck(Zm{M}). (B.3)

Appendix C. Derivation of df(z)/6z and 6%f(z)/0z>

Concerning the first derivative of f(z), one has

@ _ 2 21\ (oe—m)/2
oz aZlIl((Z/,B ) Kin—2(/2))
_ o—m 1 aKmffx(\/E)
2z KeaD 0z D
Since oK, (y)/dy = —K,.1(¥) + (v/¥)Ku(y) [34]. It follows
that
W_ _%Km w1 VD) + 1 P (V2. (C2)

Plugging Eq. (C.2) in Eq. (C.1), one obtains
@ _ 1 Kn- 1+1(\/_)

2 =202 Kol €
Concerning the second derivative of f(z), one has
62f(z) 10 (1 Km— a+1(\/—))>
o2~ 202\VZ Kno(VZ
1 Km 9(+1(«[) 1 0 Km oc+](y) (C 4)
T 482 Ky y(V2) 4z \dy Kmay) y—vz) '

Since oK, (y)/oy = —K,_1(¥) — (v/¥)K,(y) [34]. It follows
that

iKm—o(Jrl(y)
W Km-x(y) y=vZ

—(Km +(V/2) +

1
j‘f B K1 (VDK (x/2)

K- a(«f )
Kin—o+1(W2D)(Kin—u1(v/2) +
K% ,(V2)
Plugging Eq. (C.5) in Eq. (C.4), one obtains

52f(z)_l+ 1 Km—otﬂ(f) 1 Km a+1([)’<m o— l(f)
o2~ 4z 22372 Ky o(VZ) 4z K2 ,(V2)

Km «(v/2))
+ f . (C.5)

(€6
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Appendix D. Derivation of matrix I'

The matrix I' is given by

—E iKm—Hl(ﬁ)
- VzZ Kn-a(V2)

I'e—1
cicl| = %Eﬁckcﬁ], (D.1)

where the last expectation is taken under the distribution

o+m—1 -1
M
p(ck) = 20{+ﬁm—2 M

cHM-1 ¢, *-m-D/2
an(oc—l)( k 2

xKm_q1(B\/ M '), (D.2)

which is a complex K-distribution Kmn(o —1,(2/8)%, M).
Then

1 1
= mET[(:kc:fj] =——ET[xxt]

20— 1)

= ﬁE[Tk]ET[xkx?]a (D.3)
where E[t,] = (¢« — 1)(2/p)* since 1, follows a Gamma
distribution G(o — 1,(2/$)?) and ET[x;x{'] = M since x; is
a complex normal random vector (independent of ;) with
zero mean and covariance matrix M. Consequently,
I'=e/fHM .

Appendix E. Derivation of
Elvec(ccfvecH (¢ cll) /M ¢;]

In this appendix, we derive the expression of E[vec(c,cil)
vecH (¢ cl)/cfM " ¢,] where ¢,~Km(o, (2/B)*, M). The case
where ¢,~Kn(a — 1,(2/$)?, M) will be, of course, straight-
forward. Let us set the following change of variable:
¢, = M!/2y,. One obtains from Eq. (A.1k)

vec(cyeivect (e, cll)

E
ciM ¢,

=M oM7)

[vec(y,ythvecH (y,yt)
Viy,

where y~Kn(o, (2/)%,1). Since y, = JTkXy, where
T~G(a, (2/B)?) is independent of x,~CA(0,I), one has

E

:|(MT/2 ®M1/2), (E])

vec(c,clvect (c,clh)

E
-1
M~ ¢i

] = M"2 @ MY3E[7,R

x(MT2 @ M'/2), (E.2)

where E[t,] = 2(2/f)? and where

R=E

(E.3)

vec(xxivect (x,xiT)
PR ’
Let us set xg) =, /pj2 exp(it)) for j=1,...,m. Note that

pjz~xz(2) is independent of 0;~fp 2. Consequently, the
elements of the matrix R can be rewritten as

\/PEPEPY Y
R =E ["‘”’q E[exp(i(0, — Op + 04 — 0))]  (E4)

eril pjz

since
m
XX, = p? and [vec(x,x{)l,
=1
= \/ P3Py exp(i(Op — Op). (E5)
Note that E[exp(i(0p — 0y + 04 — 04))]#0 if and only if

M p=p=q=q,ie,l=k=p+mp-1),

(2) p=p,q=q and p#q, ie,l=k=p+m(q-1),

B)p=q,p=q and p#p/,ie,l=p +m@ —1) and
k=p+mp-1).

Consequently, the non-zero elements of Ry are given by

(1) Rpvmp-1ypemp-1) = E[(P3)°/ X%y pH = 4/(m+ 1),
(2) Rp+m(q—1),p+m(q—]) = E[ngfy/ Z]nll pjz] = 2/(m +1),
(3) Rormp-1yprmep—1) = Elpppg/ S0l p71=2/(m + 1),

and the matrix E[vec(cci)vec”(c,c)/c/M'¢,] can be
written as

P vec(exefvec(eefh] 20 (g)z
clleqck m+1

B
>((MT/z @ M'/2)
x(I+ vec(vec M) M'2 @ M'/2).
(E.6)
In the same way, the expression of E[vec(ccll)
vech(c el /ciM™¢,] where ¢c~Km(x—1,2/8)% M) is
given by
P vec(cicihyvec (e cl! _20@-1 (g)z
M ¢, m+1 \f
><(MT/z ® M1/2)
x(I+ vec(vec ' M) M'2 @ M'/2).
(E.7)

Appendix F. Analysis of Y

Let us set the following change of variable: ¢, =
M'2 /zx,, where t,~G(o,(2/f)*) is independent of
X, ~CN(0,]), one has

1 -
Y= E(Mm @MY M2 @ M'/2),

where

|:77ka—0(— 1B/ TX iK1 (B ) T Xi) vec(xxdyvecH (xxd! }

i
K2_,(B\/Tixtix) X X

(F.1)

Let us set xg) =, /pjzexp(i(?j) forj=1,....m p?~y*Q2)is
independent of 0;~Uo2. Consequently, due to Eq. (E.5),
the elements of the matrix X' can be rewritten as

| K (B\Je X1 92 ) Kot (Bt X1 02) /30303 0%
T K (5 S 7) Y,

xE[exp(i(0p — Oy + 0y — 09))]. (F.2)
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As before, E[exp(i(0, — 0y + 04 — 09))]#0 if and only if

M p=p =q=q,ie,l=k=p+mp-1),

(2) p=p,q=q and p#q,ie,l=k=p+m(q—1),

B)p=q,p=q and p#p/,ie,l=p +m@ —1) and
k=p+m@p-1).

Consequently, the non-zero elements of Yk,l are given by

(1) Yp+m(p_—1),p+m<p—1) ]
Ko (B0 S50 Koo (B2 21 0)
Ko (B /1 S 7 ) v

=E |1y

(2) Y}Hm(qjl)mm(qfl)

Ele Kin—o-1 (/f\/‘fk' it ﬂf)Km—Hl (ﬁ T Yoje IJJZ) pip3
=E|te

Ko (By/7ie S 07) DRV

(3) Yp+m(qf1),p’+m(p’71) .

K1 (Bt Sy 07 ) Kot (By 16 1 P2) - p2p2

, m 2"
K& (.B\/Tk' I p7) 21 ]

=E|1g

Note  that Yorm@-1)p+ma-1) = Yprmp-1)p+mp—1) =
LY mp-1)p+mp-1) YP ¥’ Vq Vq'. Consequently, only

@(o,m)
e (B2 S 97 Kmoa By S0 D) (22
- BE| 7, b
KB/t S 9P) Y p?
(F.3)

has to be computed and the matrix Y can be written as

Y= %(MW 2 @ M) + vec(Iyvec’ (I))

x(MT/2 @ M'/?), (F.4)

2Note that ¢(o«,m) is independent of [ since,
Pt ~G(a, 4).
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