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Abstract—Near-field source localization problem by a passive antenna
array makes the assumption that the time-varying sources are located near
the antenna. In this context, the far-field assumption (i.e., planar wave-
front) is, of course, no longer valid and one has to consider a more com-
plicated model parameterized by the bearing (as in the far-field case) and
by the distance, named range, between the source and a reference coordi-
nate system. One can find a plethora of estimation schemes in the litera-
ture, but their ultimate performance in terms of mean square error (MSE)
have not been fully investigated. To characterize these performance, the
Cramér–Rao bound (CRB) is a popular mathematical tool in signal pro-
cessing. The main cause for this is that the MSE of several high-resolution
direction of arrival algorithms are known to achieve the CRB under quite
general/weak conditions. In this correspondence, we derive and analyze
the so-called conditional and unconditional CRBs for a single time-varying
near-field source. In each case, we obtain non-matrix closed-form expres-
sions. Our approach has two advantages: i) due to the fact that one has
to inverse the Fisher information matrix, the computational cost for a large
number of snapshots (in the case of the conditional CRB) and/or for a large
number of sensors (in the case of the unconditional CRB), of a matrix-based
CRB can be high while our approach is low and ii) some useful information
can be deduced from the behavior of the bound. In particular, an explicit
relationship between the conditional and the unconditional CRBs is pro-
vided and one shows that closer is the source from the array and/or higher
is the signal carrier frequency, better is the range estimation.

Index Terms—Bearing and range estimation, Cramér–Rao bound, near
field, performance analysis, performance bound, source localization.

I. INTRODUCTION

Passive sources localization by an array of sensors is an important
topic with a large number of applications, such as sonar, seismology,
digital communications, etc. Particularly, the context of far-field
sources has been widely investigated in the literature and several
algorithms to estimate the localization parameters have been proposed
[2]. In this case, the sources are assumed to be far from the array of
sensors. Consequently, the propagating waves are assumed to have
planar wavefronts when they reach the array. However, when the
sources are located in the so-called near-field region, the curvature
of the waves impinging on the sensors can no longer be neglected.
Therefore, in this scenario, each source is characterized by its bearing
and its range.

In array processing, there exist two different models depending on
the assumptions about the signal sources: 1) the so-called conditional
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model, i.e., when the signals are assumed to be deterministic but un-
known and 2) the so-called unconditional model, i.e., when the signals
are assumed to be driven by a Gaussian random process. Each model
is appropriate for a given situation. For example, the assumption of
Gaussian source signal is not realistic for several applications (for ex-
ample, in radar [3] or radio communication applications [4]). A legiti-
mate choice is then to assume that the emitted signals are deterministic
and unknown. On the other hand, in some applications it is appropriate
to model the sources as stationary Gaussian processes (for examples
in seismology and tomography, see [5]). One can find many estima-
tion schemes adapted to near-field source localization (e.g., [6]–[8]),
but only a few number of works studying the optimal performance as-
sociated with this model have been proposed. To characterize the per-
formance of an estimator in terms of mean square error (MSE), the
Cramér–Rao bound (CRB) is certainly the most popular tool [9].

Since, in array processing, two signals models are generally used, it
exists two distinct CRB named the Unconditional CRB (UCRB) and
the Conditional CRB (CCRB). More precisely, the UCRB is achieved
asymptotically, i.e., for a large number of snapshots, by the Uncondi-
tional Maximum Likelihood (UML) estimator [10], whereas the CCRB
is achieved asymptotically, i.e., at high signal-to-noise ratio, by the
Conditional Maximum Likelihood (CML) estimator [11].

Most of the results concerning the UCRB and the CCRB available in
the literature deal with the far-field case. Moreover, in some works, only
closed-form expressions of the Fisher information matrix are given. We
call these cases matrix expression of the CRB since the inversion of the
FIM is not presented. On the other hand, we will refer to a non-ma-
trix expression of the CRB when the inversion of the FIM is proposed.
Note that, in the conditional signal model case, this distinction is fun-
damental since the size of the parameter vector grows with the number
of snapshots.

In [12], the UCRB was indirectly derived as the asymptotic, in terms
of number of snapshots, covariance matrix of the UML estimator. Ten
years after, Stoica et al. [13], Pesavento and Gershman [14] and Ger-
shman et al. [15] provided a direct (but similar) matrix-based derivation
of this bound using the extended Slepian–Bangs formula for a uniform,
a nonuniform, and an unknown noise field, respectively. On the other
hand, a matrix-based expression of the CCRB for the far-field case was
derived by Stoica et al. in [16].

Unlike the far-field case, the CRB for the near-field localization
problem has been less studied. One can find in [17] matrix-based
expressions of the UCRB for range and bearing estimation. Ottersten
et al. derived a general matrix-based expressions of the UCRB for
unknown parameters associated with the emitted signal [10]. Recently,
Grosicki et al. [6] extended, to the near-field case, the matrix-form
expression for the UCRB similar to that given in [12] in the far-field
case. Again, one should note that all the closed-form expressions,
given in the literature and above concerning the near-field case, are
matrix-based expressions stopped before the inversion of the Fisher
information matrix. To the best of our knowledge, no non-matrix
expressions are available concerning the CCRB and UCRB for range
and bearing estimation in the near-field context. The goal of this
correspondence is to fill this lack. Particularly, non-matrix closed-form
expressions of the CRB in the case of a single deterministic (but
unknown) and stochastic time-varying narrowband source in the
near-field region are derived and analyzed. Consequently, this ap-
proach avoids the costly computational cost of the matrix-based
CRB expressions particularly for a large number of snapshots (for the
CCRB) and/or for a large number of sensors (for the UCRB). However,
it is not the only reason concerning the usefulness of these non-matrix
expressions. Deriving non-matrix expressions of the CRB enables us
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to characterize the performance of any unbiased estimator and to use
it to deduce some useful information describing the behavior of the
MLE variance as a function of the physical parameters.

This correspondence is organized as follows. Section II formulates
the problem and basic assumptions. In Section III we present our
derivation of the CCRB and the UCRB in the near-field region.
Section IV is devoted to the analytical and numerical analysis of the
CRB where we provide a discussion on the CRB’s behavior. Fur-
thermore, simulation results are provided to validate this theoretical
analysis. Finally, conclusions are given in Section V.

Glossary of Notation: The following notations are used through
the correspondence. Matrices and vectors are represented by bold
uppercase and bold lowercase characters, respectively. Vectors are,
by default, in column orientation, whereas �� ������ � ����� and
������ denote the transpose, the conjugate, the conjugate transpose,
the trace and the determinant of the matrix �, respectively. ���� and
������ denote the �th element of the vector � and the �th row and
the �th column element of the matrix �, respectively. Furthermore,
����� ��������� ���	
�������	
���
��
��� �
�� and ���
�� stand
for the real part, the expectation, the Hadamard product, the Kro-
necker product, the diagonal operator, the block diagonal operator,
the vec-operator, the Kronecker symbol and the modulo operator,
respectively. �� and ���� denote the vector of dimension � � � filled
by ones and the identity matrix of size � � �, respectively. Finally
	� 

�� and ��������� � 
�
�� �

��� �
�
� 
�� denote the complex number	
�, the terms of order larger or equal to � and the normalized norm

of the vector ������.

II. PROBLEM SETUP AND ASSUMPTIONS

Consider an uniform linear array (ULA) of� sensors with inter-ele-
ment spacing � that receives a signal emitted by a single near-field and
narrowband source. Consequently, the observation model is as follows:

��
�� � �
���	�
� � ��
���

� � �� � � � � �� � � �� � � � � � 
 �

where ��
�� is the observed signal at the output of the 
����th sensor.
In the conditional case, �
�� � �
���	��
� ��
���� is the source signal
with a carrier frequency equals to �� where �
�� and �
�� are the real
amplitude and the shift phase, respectively. The random process ��
��
is an additive noise and � is the number of snapshots. The time delay
�� associated with the signal propagation time from the first sensor to
the 
� � ��th sensor is given by [6]

�� �
�

���
� �

����

��

 ��� ��� �

�

 �

where � is the signal wavelength and where � and � � ��� �
�� denote
the range and the bearing of the source, respectively. It is well known
that, if the source range is inside of the so-called Fresnel region [7], i.e.,

���� ��

� 
 ���

�

���

� � � ���

� 
 ���

�
� (1)

then the time delay �� can be approximated by �� � 
�� �
����

��� � 

��
���. � and � are the so-called electric angles
which are connected to the physical parameters of the problem by:
� � 
��� ���
��
� and � � ��� ����
��

���. Then, neglecting


��
��� in the time delay expression [7], the observation model

becomes ��
�� � �
���	������ � � ��
��. Consequently, the obser-
vation vector can be expressed as

���
�� � �
�����
�� � �
�� (2)

where ���
�� � ���
�� � � � ����
���� ��
�� � ���
�� � � � ����
���� and
where the 
� � ��th element of the steering vector �
���� is given
by ��
�� ������ � �	������ �. The noise will be assumed to be a
complex circular white Gaussian random process with zero-mean and
unknown variance  �, uncorrelated both temporally and spatially. Con-
sequently, the joint probability density function of the observations
!!! � ����� 
�� � � ����� 
���� given a parameter vector """ is given by

#
!!!�"""� �
�

���

#
���
���"""� � �

��� �������
���������� � ���������

where � and $$$ denote the covariance matrix and the average of !!!,
respectively.

III. CRAMÉR–RAO BOUNDS DERIVATION

The goal of this section is to derive the CCRB and the UCRB
with respect to the bearing and the range. Let ��
�""" 
 """�
�""" 
 """���
be the covariance matrix of an unbiased estimator, �""", of a deter-
ministic parameter vector """. The covariance inequality principle
states that, under quite general/weak conditions, the variance sat-
isfies ���
��"""��� � ��
��"""�� 
 �"""���

�� 
 ����
"""����� where
���
"""� � 	
�

��
"""�. In the following, for sake of simplicity the
notation, �� 
�"""��� will be used instead of ����
"""�����. Since we
are working with a complex circular Gaussian observation model,
the (�th, �th) element of the Fisher information matrix (FIM) for the
parameter vector """ is well known and can be written as [18]

�	
�
"""����� � �� �
�� %�

%�"""��
�
�� %�

%�"""��

��� %$$$�

%�"""��
�
�� %$$$

%�"""��
� (3)

Note that (3) depends on the assumptions on the parameters of the
model (equivalently, on the parameter vector """) via the probability
density function #
!!!�"""�. The remaining of the section is dedicated to
the study of two source models: �� the conditional model for which
�	
�
"""� and ����
"""� will denote the conditional FIM and the
conditional CRB w.r.t. the parameter vector """, respectively; ��� the un-
conditional model for which �	
�
"""� and ����
"""� will denote
the unconditional FIM and the unconditional CRB w.r.t. the param-
eter vector """, respectively. For each case we provide an analytical in-
version of the FIM which leads to a non-matrix closed-form expres-
sion of the CRB according to the electrical angles. Finally, by using a
simple change of variables, we obtain the (non-matrix) expression of
CRB according to the physical parameters (bearing and range) for a
single source.

A. The Conditional Model

First, let us consider the conditional model. Let us define
��� � ��
�� � � ��
���� and ��� � ��
�� � � ��
���� . The unknown pa-
rameter vectors are &&& � �� ����� ����  ��� or ''' � �� ����� ����  ���

depending if we are working on the electrical angles or on the physical
parameters of interest. First, we derive ����
&&&�. Second, by using
an appropriate change of variables we will deduce ����
'''�. Note
that ''' and &&& are assumed to be deterministic and that their size grows
with the number of snapshots. First, let us focus on the derivation
of ����
&&&�. Due to the conditional model assumption we have
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� � ����� and ��� � ������� ��� �� � � � ������ ������� . Conse-
quently, by applying (3) one obtains

�������������� �
	�

��

��


������


��


������
�

�

��
�


����


������


���


������
� (4)

1) Block-Diagonal Structure of the Fisher Information Matrix:
Using (4) and after some tedious, but straightforward, algebraic
calculations, one can easily prove the following lemma:

Lemma 1: The structure of��������� for a single near-field source
is given by

��������� � 	
��
�����


 �� (5)

in which

��� �

��� ��	 ��




�	� �		 �	



�


� �


	 �







� (6)

and 


 � 	
��
���	������� 	�����,
where the conditional SNR is denoted by
���� � ���������� ��� � �����	�	 � ����	 � �����
�		 � ���� �	�	 � ����	 � ����	� � �	 � ������
and ��	 � �	� � ���� �	��	 � �����. Furthermore,
the � � � vectors �


�� ���


�

� � �


	 and ��	


�
� are given by

�


� � ���


�
� � 	�	 � ������� ������� and �


	 � ��	


�

� �
	�	 � ����	 � ������� ����������. The ��� matrix �





 is given
by �





 � �	
��
���� � �������.

We notice that, thanks to the time-diversity of the source signal,
����


 � ��


����

� are null matrices. We also note the well-known prop-
erty that the signal parameters (i.e., �� ���������) are decoupled from the
noise variance [19]. The other zero terms are due to the consideration
on the real part which appears in (4) applied to purely imaginary quan-
tities and imply that the amplitude of the signal source ��� is decoupled
from the other model signal parameters (i.e., �� � and ���).

a) Analytical Inversion: Since the size of ��������� proposed
in (5) is equal to ���� �� � ���� ��, it depends on the number of
snapshots. A brute-force numerical inversion to obtain��������� can
consequently be a costly operation. Using an appropriate partition of
��������� and after writing analytically the expression of the inverse
of the Schur complement of the square matrix �





 in the upper-left
block matrix of ���������, we can state the following theorem.

Theorem 1: Non-matrix closed-form expressions of ���������
corresponding to the electrical angles, the amplitudes and the
shift phases relatively to the model (2) exist iff 	 � � and
���� �� � 	� � � � � ��. They are expressed as follows:

������� �
���	 � ����	 � ���

���� ��	� � ��	�	� � ��
� (7)

������� �
��

���� ��	� � ��	�	� � ��
� (8)

���������� �
�	� � ��	 � � � ��������	� � �	� � �	�

���� �����	��	 � ���	 � ��
�

and

���������� �
��

�	
�

Furthermore, the cross terms are given by

�������������� �

�������������� �
���

���� �	�	� � ���	 � ��
�

����������������	� �

��������������	��� �
����	 � ��

���� �	�	 � ���	 � ��
	
�
� �

and

����������������	� �

��������������	��� �
��

���� �	�	 � ���	 � ��
	
�
� �

Proof: See Appendix A.
b) Change of Variables: Even if the model (2) is widely used in

array signal processing, its CRB relating to ��� does not bring us physical
information. Then, it is interesting to analyze the CRB regarding the
bearing � and the range � which are the real physical parameters of
the problem. From ���������, one can easily obtain ��������� by
using a change of variables formula (see [19, p. 45]):

��������� �


�����


����
���������



� �����


���

where

��� � 
�����

� �� ������� ��
�
�

� 
�

�	
������������ ��

�
�
�� ���� ������ �� �

Note that the function 
����� is well-defined iff � �� � ��
��� which
implies � �� ��� ��
���. This condition is intuitive since it corre-
sponds to the ULA ambiguity situation. Then, if � �� � ��
���, the
Jacobian matrix is given by 

������
���� � 	
��
����� �����	��, where

��� �
��

��� ������

� �

��� ������ ��
� 
��
��

� (9)

Consequently, one obtains the following theorem:
Theorem 2: Non-matrix closed-form expressions of ���������

corresponding to the bearing, the range, the amplitude and the shift
phases relatively to the model (2) exist iff	 � � and � �� �����
���
and ���� �� �� 	� � � � � �� and they are given by (10) and (11),
shown at the bottom of the page. Furthermore, the cross terms between
� and � are as follows:

�������������� � �������������� �
�����

���� �����

�
����	 � �� � ���	 � �����	 � �� ������

	�	� � ���	� � �� �������
�

������� �
���

����� ����� �������

��	 � �����	 � ��

	�	� � ���	� � ��
� (10)

������� �
�����

���� �����
���� � �����	 � �� ������ � ����	 � �����	 � �� �������

	�	� � ���	� � �� �������
� (11)
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B. The Unconditional Model

Let us consider now the unconditional model, i.e., when the sig-
nals are assumed to be Gaussian (with zero mean and variance ��� )
independent of the noise. The unknown parameter vectors are ��� �
�� � ��� �

��� or ��� � �� � ��� ���� depending if we are working on
the electrical angles or on the physical parameters of interest. We first
focus on the derivation of ���������.

Under the unconditional model assumption, ����	����� �
�� ��
�� �	 � �
 � � � 
 �, where the covariance matrix
� � ������
���

���
�� � ���� . Consequently, the FIM in (3) be-
comes ����	��������� � � 	
�������
���������

�����
���������.
The matrix expression of ������������������ can be readily
established (we omit the proof since it is obtained in the same way as
in [13]) according to

������������������ �
�

����� ����
� 


�
�
�

����	�


	 �
 ����
��������
��
�

��

(12)

where ���� � ���
�
� denotes the unconditional SNR, � �


�

�
� 

 � ������
��
��������
��
���� and �

�

����	� �

�� � ���
�������
�����
���������
��. In the following we
use (12) to derive non-matrix expressions of ���������.

1) Analytical Inversion:
Theorem 3: Non-matrix expressions of ��������� corresponding

to the electrical angles are, well-defined iff � � 
, and are given by

������� � � �
�

���� �

���� � ����� � ���

���� ���� � ������ � ��

 (13)

������� � � �
�

���� �

��

���� ���� � ������ � ��
� (14)

Furthermore, the cross terms are given by

�������������� � ��������������

� � � �
�

���� �

��

���� ����� � ���� � ��
�

Proof: See Appendix B.
2) Change of Variables: using the same change of variables formula

as for Theorem 2 one can easily prove.
Theorem 4: Non-matrix closed-form expressions of ���������

corresponding to the range and bearing for a single narrowband near-
field source are well-defined iff � � 
 and � 
� �
������� and they
are expressed in (15) and (16), shown at the bottom of the page. Fur-
thermore, the cross terms between � and � are given by

�������������� � ��������������

� � � �
�

���� �


���

���� ����	

�
����� � �� � ���� � ������ � �� ������

���� � ����� � �� ���	���
�

IV. ANALYSIS OF THE CRB

The goal of this Section is to validate and analyze the proposed
closed-form expressions. The behaviors of the CRB are detailed with
respect to physical parameters of the problem.

A. Conditional and Unconditional CRB’s Behavior

The scenario used in these simulations is an ULA of � � � sensors
spaced by � � 0.125 m. The number of snapshots is equal to � � ���
and the location of the source is set as � � 1.25 m (which belongs
to the Fresnel region according to (1) for �
 � ����
 ����� MHz). In
Fig. 1, we superimpose the CRBs, obtained from (11) and (16) to the
computed CRBs. For these simulations, the signal source is a sample
of a complex random Gaussian process with variance ��� � ��. The
variance of the noise varies from 0.1 to 1.

Moreover, Fig. 1 shows the dependence of the ������� and
������� w.r.t. the carrier frequency �
 and suggests that higher
is the carrier frequency, lower is the bound. Furthermore, from the
closed-form expressions given in (10), (11), (15) and (16), we notice
the following.

• UCRB and CCRB are phase-invariant.
• ������� and ������� are just bearing-dependent as in the

far-field scenario w.r.t. ���
 ��������. It means that the ULA in
the near-field case is not isotropic.

• For large � and fixed inter-spacing sensor, �������
and ������� in the near-field case tend to the asymp-
totic CRBs in the far-field case which are given by
�
���
��������� ��������	�. This is consistent with the
intuition since, due to the Fresnel constraint, large � implies
large range, which corresponds to the far-field scenario.

• ������� and ������� are bearing-dependent and range-de-
pendent. For � proportional to �, the dependence w.r.t. the range
is �����, meaning that nearer is the source better is the range es-
timation (keeping in mind the Fresnel constraints).

• The dependence of the range w.r.t. the bearing is ���
 ��������.
For � close to �
� (i.e., close to the ambiguity situation), we ob-
serve that ������� and ������� go to infinity but faster than
������� and �������, respectively.

• For a sufficient number of sensors, �������
�������

������� and the ������� are ���
�	�.

• For � proportional to �
������� and ������� are indepen-
dent of the carrier frequency �
. This is not the case for�������
and �������. Furthermore, note that higher is the carrier fre-
quency, better is the estimation of the range (cf. Fig. 1).

• Note that the expressions of ��������������
 ��������������

�������������� and �������������� show that the phys-
ical parameters of interest are strongly coupled since
�������������� and �������������� are ���
�	� as
�������
 �������
������� and �������.

• Finally, since ������� is ���
�	� and ������� is
���
���, thus, for a sufficient number of sensors the esti-
mation of the so-called second electrical angle � is more accurate
than estimating the first electrical angle �.

������� � � �
�

���� �


��

����� ����� �������

��� � ������ � ��

���� � ����� � ��

 (15)

������� � � �
�

���� �

�����

���� �����
���� � 
����� � �� ������ � ����� � ������ � �� �������

����� � ����� � �� �������
� (16)
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Fig. 1. ������ versus � for � � ��� and different values of
� � 	� � 
� � �� : (a) ������� and (b) �������.

B. Analytical and Numerical Comparison Between the
CCRB and the UCRB

Since the conditional model does not make any assumptions on the
source, we can chose the phase and the amplitude of the source as sam-
ples of a random process. In this case, we can study an analytical and
numerical comparison between the conditional and the unconditional
CRB. Furthermore, we assume that the two physical quantities ����
and ���� are equals to the same quantity denoted by SNR.

Corollary 1: From (7) and (13), one obtains the fol-
lowing: ��������������� � � 	 ����
�� ���,
and ��������������� � � 	 ����
�� ���. In
the same way, from (10) and (15), one obtains the fol-
lowing: ��������������� � � 	 ����
�� ���, and
��������������� � � 	 ����
�� ���, i.e., ������� �
��������������� � ������� and ������� � ��������
������� � ������� (cf. Fig. 2). Note that, a similar result has
been shown in the far-field case in [12].

Furthermore,
• for a fixed � : �������

�����
� �������, and

�������
�����
� �������.

• for a fixed SNR: �������
���
� ������� and

�������
���
� �������.

Fig. 2. CRBs versus the number of snaphots for � � 	�: (a) ������� and
�������, (b) ������� and �������.

• and finally, for ���
�� �� � �: ������� � ������� and
������� � �������.

V. CONCLUSION

In this correspondence, the conditional and the unconditional
Cramér–Rao bounds are derived in a closed-form expressions for a
single near-field time-varying narrowband source in terms of range
and bearing. These expressions are given in non-matrix forms which
are important in order to avoid a costly Fisher information matrix
numerical inversion. Moreover these expressions provide useful
information concerning the behavior of the bounds. In this way, the
proposed expressions have been analyzed with respect to the physical
parameters of the problem. In particular, we provided an explicit link
between the conditional and the unconditional CRB and we shown
that higher is the carrier frequency and/or closer is the source from the
array, better is the estimation of the range.

APPENDIX A

In this Appendix, we highlight the major steps leading to Theorem 1.
From (5) one has,

�
������������ � �
��			��
��


 �

� �
� �� �
�����������
��


 � (17)
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where �� denotes the Schur complement w.r.t. the matrix ������� .
Assuming that ���� �� �� �� � � � � ���������� is invertible and the
Schur complement is expressed as follows:

�� �
��� ���

��� ���
�

�����

�����
�
��
������� ����� ����� �

� 			 �

�

��
���	
������� ���������� (18)

where
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��	 ���� � ��


�����
�

�
����
�

�
����
�


�����
�� ������
��

�

and

��� �
�


�
��� � ��

�
����
�����
�

� ����� ����� �

Thus, by replacing (18) in (17) one obtains

	������	������ �
�

���

��


�

��

�
���� � ���� � ����� � ���	���	�

�

	��

�
�����

Consequently, 	������	������ �� � iff � 
 � and ���� �� � �� �
� � � ��. Assuming � 
 � and ���� �� � �� � � � � ��, one has
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������� � �	
���
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where
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�
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�

In order to derive 


��, we use the Schur complement �� given in
(18). Thus,

���
��������
�
�
� � �
��
�

�

Since the Schur complement �� is a 2� 2 matrix, its inverse is
easily derivable and leads to (7), (8). The other terms are directly de-
rived from the following calculation, where
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APPENDIX B

In this Appendix, the dependence on ��� �� of ������ �� is omitted
for sake of simplicity. Applying the matrix inversion lemma [18] to
,
one obtains
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Thus, using the above equation one has
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�� (19)

On the other hand, the derivation of ��� w.r.t. � and � leads to

����

 � ����� ����� � �� � ��� ������ � �����
����� �

�� � � � � �� ��	 �� � �� ��

Consequently [see the equation shown at the top of the page]. Thus,
using the above expression and (19) and after some simplifications, we
obtain
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which leads to
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Consequently,
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Then, assuming that � 
 � and replacing (20) in (12), we obtain
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Optimal Relay Function in the Low-Power Regime for
Distributed Estimation Over a MAC

Marco Guerriero, Stefano Marano, Vincenzo Matta, and
Peter Willett, Fellow, IEEE

Abstract—A random parameter is estimated by a distributed network of
sensors that communicate over a common multiple-access channel (MAC).
A MAC implies an additive fusion rule, and the goal here is to design a
power-constrained forwarding strategy and fusion center post-processing.
To get an explicit solution we appeal to asymptotics, meaning that we design
the locally optimal scheme for the limiting case that the received power goes
to zero.

Index Terms— Distributed estimation, MAC, relay.

I. INTRODUCTION AND BACKGROUND

Reliable data delivery from several remote sensors sharing a
common transmission medium is possible, and can be realized by
employing source and channel coding strategies borrowed from (or
extending) classical point-to-point results. This approach decouples
the source and channel coding stages; however, it is known that
this separation is not necessarily optimal [1] when the sources are
correlated and/or one’s goal is not direct recovery of the observations.

A basic lesson from [2] is that there exist cases in which a simple
amplify-and-forward strategy outperforms the best separate scheme by
orders of magnitude. This happens, for instance, for Gaussian estima-
tion problems over a Gaussian MAC [3], and it is due to the perfect
match between the (additive) nature of the optimal MMSE estimator
and the (additive) channel structure. In this work, we depart from the
source/channel Gaussian model and the corresponding amplify-and-
forward solution, allowing the local encoders to apply a nonlinear trans-
formation to arbitrarily distributed observations (see Fig. 1). We limit
ourselves to the ideal MAC—not necessarily a Gaussian one—that re-
quires perfect synchronization of the transmissions, both in time and
phase, at the local sensors, and we operate under a relayed power con-
straint.

Joint consideration of the estimation problem and the noisy MAC
is in [4] and [5], in which in the asymptote of an increasingly large
number of sensors an optimal communication/estimation scheme
(called type-based multiple access, or TBMA) was proposed for
quantized observations. A likelihood-based multiple access (LBMA)
scheme, suitable for continuous observations, was discussed in [6], and
yields asymptotically efficient estimation over a waveform channel.
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